综述文章

基于光纤Bragg光栅的油气工业实时监测技术研究进展

  • 孙艳坤 ,
  • 李琦 ,
  • 李霞颖 ,
  • 杨多兴
展开
  • 1. 中国科学院武汉岩土力学研究, 所岩土力学与工程国家重点实验室, 武汉430071;
    2. 中国地震局地壳应力研究所, 北京100085
孙艳坤,博士研究生,研究方向为岩石物理与渗流监测,电子信箱:sunyank@163.com

收稿日期: 2014-12-19

  修回日期: 2015-02-09

  网络出版日期: 2015-07-25

基金资助

国家自然科学基金面上项目(41274111)

Progress on real-time monitoring technology in oil and gas industry based with fiber Bragg grating sensing

  • SUN Yankun ,
  • LI Qi ,
  • LI Xiaying ,
  • YANG Duoxing
Expand
  • 1. State Key Laboratory of Geomechanics and Geotechnical Engineering; Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China;
    2. Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China

Received date: 2014-12-19

  Revised date: 2015-02-09

  Online published: 2015-07-25

摘要

光纤Bragg 光栅(FBG)是近年发展起来的一种实时高精度监测技术,具有耐高温高压、抗电磁干扰、易于复用与可组网等独特优点,成为油气领域最具前景的监测手段.介绍了FBG 传感技术的发展历程、工作原理,重点分析了全球油气工程中管道完整性监测、油气测井、地震勘探方面的最新应用现状;探讨了目前FBG 传感器在油气田复杂环境条件下实时监测存在的问题,并就未来发展趋势进行展望.

本文引用格式

孙艳坤 , 李琦 , 李霞颖 , 杨多兴 . 基于光纤Bragg光栅的油气工业实时监测技术研究进展[J]. 科技导报, 2015 , 33(13) : 84 -91 . DOI: 10.3981/j.issn.1000-7857.2015.13.014

Abstract

FBG (fiber Bragg grating) has been used to develop a kind of high precision and real-time monitoring technology, which possesses some unique advantages of high temperature and high pressure endurance, resistance to electromagnetic interference, ease of reuse and networking, etc. Obviously, it is bound to become the most promising monitoring method in oil and gas field, including carbon geological utilization and storage, acid gas injection, and earthquake net-working. In this paper, a development history and working principle of FBG are presented firstly, and the latest application status of FBG sensors in pipeline integrity monitoring, logging, seismic exploration is analyzed. Then, some key issues on real-time monitoring under complex environment conditions are discussed, and finally, development and application trends are put forward.

参考文献

[1] Laffont G, Cotillard R, Ferdinand P. Multiplexed regenerated fiber Bragg gratings for high- temperature measurement[J]. Measurement Science and Technology, 2013, 24(9): 1-5.
[2] Ye X W, Su Y H, Han J P. Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review[J]. Scientific World Journal, 2014, 2014(8): 1-11.
[3] Rodriguez G, Sandberg R L, Jackson S I, et al. Fiber Bragg sensing of high explosive detonation experiments at Los Alamos national laboratory[J]. Journal of Physics: Conference Series, 2014, 500(6): 1-6.
[4] Pal B P. Optical fiber sensors: A versatile technology platform for sensing[J]. Journal of the Indian Institute of Science, 2014, 94(3): 283-309.
[5] Kinet D, Megret P, Goossen K W, et al. Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions[J]. Sensors, 2014, 14(4): 7394-7419.
[6] Kazunori T S. Fiber- optic- based life- cycle monitoring of throughthickness strain in thick CFRP pipes[J]. Advanced Composite Materials, 2014, 23(3): 195-209.
[7] 王静, 李术才, 施斌, 等. 三向FBG应变传感器及在隧道开挖模型试 验中的应用研究[J]. 工程地质学报, 2013, 21(2): 182-189. Wang Jing, Li Shucai, Shi Bin, et al. Trifarious FBG sensor strain transfer characteristics and its application to tunnel excavation model test[J]. Journal of Engineering Geology, 2013, 21(2): 182-189.
[8] Hua F, Pei J T, Jian H Y, et al. A review of studies on the application of fiber optic sensors in geotechnical health monitoring[J]. Measurement, 2013, 58(14): 207-214.
[9] Lin B, Giurgiutiu V. Exploration of ultrasonic guided wave detection with optical fiber sensors and piezoelectric transducers[C]. 9th International Workshop on Structural Health Monitoring, Stanford, CA, September 10-12, 2013.
[10] Lai M, Karalekas D, Botsis J. On the effects of the lateral strains on the fiber Bragg grating response[J]. Sensors, 2013, 13(2): 2631-2644.
[11] Hu J, Zhu Q P, Zhao M L, et al. Fiber Bragg grating sensor for the research of water level measurement[J]. Advanced Materials Research, 2013, 823(10): 349-353.
[12] Castro C A, Torres P, Lain R. Packaging and testing of fiber Bragg gratings for use as strain sensor in rock specimens[C]. 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications, Porto, Portugal, July 22, 2013.
[13] Pereira G, Frias C, Faria H, et al. Study of strain-transfer of FBG sensors embedded in unidirecional composites[J]. Polymer Testing, 2013, 32(6): 1006-1010.
[14] 张丹, 徐洪钟, 施斌, 等. 基于FBG技术的饱和膨胀土失水致裂过程 试验研究[J]. 工程地质学报, 2012, 20(1): 103-108. Zhang Dan, Xu Hongzhong, Shi Bin, et al. FBG technology based experimental studies on cracking of expansive soil due to dehydration[J]. Journal of Engineering Geology, 2012, 20(1): 103-108.
[15] Reinsch T, Blöcher G, Milsch H, et al. A fibre optic sensor for the in situ determination of rock physical properties[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 55: 55-62.
[16] Mihailov S J. Fiber Bragg grating sensors for harsh environments[J]. Sensors, 2012, 12(2): 1898-1918.
[17] Kou J L, Ding M, Feng J, et al. Microfiber-based Bragg gratings for sensing applications: A review[J]. Sensors, 2012, 12(7): 8861-8876.
[18] Cheng L K, Vliegenhart W, Habisreuther T. Optical fiber grating based technologies and their applications: From nuclear fusion to medical[C]. 2012 Photonics Global Conference (PGC), Singapore, December 13-16, 2012.
[19] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639.
[20] Pereira G, Frias C, Faria H, et al. On the improvement of strain measurements with FBG sensors embedded in unidirectional composites[J]. Polymer Testing, 2012, 32(1): 99-105.
[21] Willsch R, Ecke W, Bartelt H. Optical fiber sensor research and industry in Germany-review and outlook[C]. 21st International Conference on Optical Fiber Sensors, Ottawa, Canada, May 15-19, 2011.
[22] Lee J T, Tien K C, Ho Y T, et al. A fiber optic sensored triaxial testing device[J]. Geotechnical Testing Journal, 2011, 34(2): 103-111.
[23] 朱鸿鹄, 施斌, 严珺凡, 等. 基于分布式光纤应变感测的边坡模型试 验研究[J]. 岩石力学与工程学报, 2013, 32(4): 821-828. Zhu Honghu, Shi Bin, Yan Junfan, et al. Physical model testing of slope stability based on distributed fiber-optic strain sensing technology[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 32(4): 821-828.
[24] Baldwin C S. Brief history of fiber optic sensing in the oil field industry[C]. Fiber Optic Sensors and Applications XI, Maryland, USA, June 18, 2014.
[25] Dong X, Zhang H, Liu B, et al. Tilted fiber Bragg gratings: Principle and sensing applications[J]. Photonic Sensors, 2011, 1(1): 6-30.
[26] Davis C, Tejedor S, Grabovac I, et al. High-strain fiberBragg gratings for structural fatigue testing of military aircraft[J]. Photonic Sensors, 2012, 2(3): 215-224.
[27] Wei S M, Chai J. Strain transfer analysis of rock deformation based on FBG sensing[J]. Journal of Experimental Mechanics, 2010, 25(4): 445- 450.
[28] Hill K O, Fujii Y, Johnson D C, et al. Photosensitivity in optical fiber waveguides application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10): 647-649.
[29] Kawasaki B S, Hill K O, Johnson D C, et al. Narrow-band Bragg reflectors in optical fibers[J]. Optics Letters, 1978, 3(2): 66-68.
[30] Meltz G, Morey W W, Glenn W H. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Optics Letters, 1989, 14(15): 823-825.
[31] Hill K O, Malo B, Bilodeau F, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Applied Physics Letters, 1993, 62(10): 1035-1037.
[32] Lemaire P J, Atkins R M, Mizrahi V, et al. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres[J]. Electronics Letters, 1993, 29 (13): 1191-1193.
[33] Okabe Y, Tsuji R, Takeda N. Application of chirped fiber Bragg grating sensors for identification of crack locations in composites[J]. Composites Part a-Applied Science and Manufacturing, 2004, 35(1): 59-65.
[34] 陈建军, 张伟刚, 涂勤昌, 等. 基于光纤光栅的高灵敏度流速传感器[J]. 光学学报, 2006, 26(8): 1136-1139. Chen Jianjun, Zhang Weigang, Tu Qinchang, et al. High-sensitivity flow velocity sensor based on fiber grating[J]. Acta Optica Sinica, 2006, 26(8): 1136-1139.
[35] Bernier M, Faucher D, Vallee R, et al. Bragg gratings photoinduced in ZBLAN fibers by femtoseconnd pulses at 800 nm[J]. Optics Letters, 2007, 32(5): 454-456.
[36] Lee B. Review of the present status of optical fiber sensors[J]. Optical Fiber Technology, 2003, 9(2): 57-79.
[37] Kenneth O. H, Gerald M. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 1997, 15(8): 1263- 1276.
[38] Morey W W, Meltz G, Glenn W H. Fiber optic Bragg grating sensors[C]//Fiber Optic and Laser Sensors VII. Boston, USA: SPIE, 1990: 98- 107.
[39] Kersey A, Davis M A, Patrick H J, et al. Fiber grating sensors[J]. Journal of Lightwave Technology, 1997, 15(8): 1442-1463.
[40] Guo Z S. Strain and temperature monitoring of asymmetric composite laminate using FBG hybrid sensors[J]. Structural Health Monitoring an International Journal, 2007, 6(3): 191-197.
[41] 庞丹丹. 新型光纤光栅传感技术研究[D]. 济南: 山东大学, 2014. Pang Dandan. Investigation on the novel fiber Bragg grating sensing technology[D]. Jinan: Shandong University, 2014.
[42] Skinner N G, Maida J L. Downhole fiber optic sensing: The oilfield service provider's perspective[C]. Fiber Optic Sensor Technology and Applications III, Philadelphia, USA, June 18, 2004.
[43] Zhou J, Sun L, Li H. Study on dynamic response measurement of the submarine pipeline by full-term FBG sensors[J]. The Scientific World Journal, 2014, 2014(4): 1-9.
[44] Zhou Z, He J P, Huang M H, et al. Casing pipe damage detection with optical fiber sensors: A case study in oil well constructions[J]. Advances in Civil Engineering, 2010, 2010(12): 1-9.
[45] Lee H, Sohn H, Park H W. Pipeline monitoring using an integrated MFC/FBG system[C]. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. California, USA, March 24, 2011.
[46] Lee H, Sohn H. Damage detection for pipeline structures using opticbased active sensing[J]. Smart Structures and Systems, 2012, 9(5): 461-472.
[47] Ren L, Jia Z G, Li H N, et al. Design and experimental study on FBG hoop-strain sensor in pipeline monitoring[J]. Optical Fiber Technology, 2014, 20(1): 15-23.
[48] Shivananju B N, Kiran M, Nithin S P, et al. Real time monitoring of petroleum leakage detection using etched fiber Bragg grating[C]. International Conference on Optics in Precision Engineering and Nanotechnology, Singapore, June 22, 2013.
[49] Zhong Z Y, Zhi X L, Yi W J. Oil well real- time monitoring with downhole permanent FBG sensor network[C]//2007 IEEE International Conference on Control and Automation. New York, IEEE: 2007: 2591- 2594.
[50] Zhou X L, Li L Z, Yu Q X. Fiber Bragg grating- based quasidistributed temperature sensor for down- hole monitoring[J]. Sensor Letters, 2012, 10(7): 1486-1490.
[51] Liu L N, Long P, Liu T G. Research of pressure sensor based on the fiber Bragg grating for permanent downwell monitoring application[C]. International Conference on Applications of Photonics Technology, Ottawa, Canada, November 16, 2004.
[52] Fusiek G, Niewczas P, Judd M D. Towards the development of a downhole optical voltage sensor for monitoring electrical submersible pumps[J]. Sensors and Actuators A: Physical, 2012, 184(9):173-181.
[53] Pan Y, Chen Z, Xiao L, et al. Application of fiber Bragg grating sensor networks in oil wells[C]. Nigeria Annual International Conference, Calabar, Nigeria, July 31-August 7, 2010.
[54] Pan Y, Xiao L Z, Zhao Y Z. Design of a remote real-time monitoring system for oil and gas wells based on fiber Bragg grating[C]. Canadian International Petroleum Conference, Alberta, Canada, June 16- 18, 2009.
[55] Ficocelli P, Gonzalez L E, Vincelette A, et al. Towards enhanced steam management of SAGD wells using reliable and permanent realtime FBG- based thermal monitoring[C]. SPE Russian Oil and Gas Exploration & Production Technical Conference, Moscow, Russia, October 14-16, 2014.
[56] 周雪芳, 梁磊. 光纤光栅地震检波器结构设计与性能仿真研究[J]. 地 震工程与工程振动, 2005, 25(3): 177-180. Zhou Xuefang, Liang Lei. The structure design and cmulation of characteristics of fiber Bragg grating geophone[J]. Earthquake Engineering and Engineering Dynamic, 2005, 25(3): 177-180.
[57] 陈梓艺. 光纤光栅于地震检波器方向的应用[J]. 科技创新导报, 2014, 10(29): P68. Chen Ziyi. The application of fiber Bragg in geophone[J]. Science and Technology Innovation Herald, 2014, 10(29): P68.
[58] Wang J Y, Qi H F, Song G D, et al. A high hensitive fiber Bragg grating (FBG) geophone detecting system[C]. 3rd Asia Pacific Optical Sensors Conference, Sydney, Australia, January 31-February 2, 2012.
[59] Shao M, Qiao X G, Fu H W, et al. Applications of fiber optical sensing in seismic exploration[J]. Progress in Geophysiscs, 2011, 26 (1): 342-348.
[60] Nakstad H, Kringlebotn J T. Realisation of a full-scale fibre optic ocean bottom seismic system[C]. 19th International Conference on Optical Fibre Sensors, Perth, Australia, April 14, 2008.
[61] Weng Y Y, Qiao X G, Guo T, et al. A robust and compact fiber Bragg grating vibration sensor for seismic measurement[J]. Sensors Journal, IEEE, 2012, 12(4): 800-804.
[62] Liu Q P, Qiao X G, Jia Z A, et al. Large frequency range and high sensitivity fiber Bragg grating accelerometer based on double diaphragms[J]. Sensors Journal, IEEE, 2014, 14(5): 1499-1504.
[63] Zhang Y, Yin Z F, Chen B Q, et al. A novel fiber Bragg grating based seismic geophone for oil/gas prospecting[C]. Smart Structures and Materials 2005 Conference, San Diego, CA, May 17, 2005.
[64] Zhang Y, Li S G, Yin Z F, et al. Fiber Bragg-grating-based seismic geophone for oil/gas prospecting[J]. Optical Engineering, 2006, 45(8): 1-4.
[65] Tao G, Zhang X L, Liu X R, et al. A new type of fiber Bragg grating based seismic geophone[J]. Appllied Geophysics, 2009, 6(1): 84-92.
[66] De F J. Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks[J]. Measurement Science & Technology, 2011, 22(5): 52001-52030.
[67] 张大椿, 刘晓. 微地震监测技术及其在油田中的应用[J]. 新疆石油科技, 2013, 23(3): 12-15. Zhang Dachun, Liu Xiao. Microseismic monitoring technology and its applications in oilfield[J]. Xinjiang Petroleum Science & Technology, 2013, 23(3): 12-15.
[68] 刘百红, 秦绪英, 郑四连, 等. 微地震监测技术及其在油田中的应用 现状[J]. 勘探地球物理进展, 2005, 28(5): 325-329. Liu Baihong, Qin Xuying, Zheng Silian, et al. Microseismic monitoring and its applications in oilfield operations[J]. Progress in Exploration Geophysics, 2005, 28(5): 325-329.
[69] Weng Y Y, Qiao X G, Feng Z Y, et al. Compact FBG diaphragm accelerometer based on L- shaped rigid cantilever beam[J]. Chinese Optics Letters, 2011, 9(10): 1-4.
[70] 邵敏, 乔学光, 冯德全, 等. 基于光纤Bragg光栅的地震检波器的理论 与实验研究[J]. 光电子·激光, 2012, 23(3): 418-424. Shao Min, Qiao Xuegang, Feng Dequan, et al. Theoretical and experimental study on seismic sensor based on fiber Bragg grating[J]. Journal of Optoelectronic·Laser, 2012, 23(3): 418-424.
[71] 李学成, 刘肃, 张文涛, 等. 双膜片结构光纤光栅地震检波器低频特 性的研究[J]. 光电子·激光, 2010, 21(4): 529-532. Li Xuecheng, Liu Su, Zhang Wentao, et al. Study on low-frequency characteristic of double- diaphragm fiber Bragg grating geophone[J]. Journal of Optoelectronic·Laser, 2010, 21(4): 529-532.
[72] 张发祥, 张晓磊, 王路杰, 等. 高灵敏度大带宽光纤光栅微地震检波 器研究[J]. 光电子·激光, 2014, 25(6): 1086-1091. Zhang Faxiang, Zhang Xiaolei, Wang Lujie, et al. Study on FBG micro-seismic geophone with high sensitivity and broad bandwidth[J]. Journal of Optoelectronic·Laser, 2014, 25(6): 1086-1091.
[73] Wang J Y, Liu T Y, Wang C, et al. A micro- seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser[J]. Measurement Science & Technology, 2010, 21(9): 765-771.
[74] 胡志新, 张陵, 乔学光, 等. 分布式光纤布拉格光栅在油气管道检测 中的应用[J]. 管道技术与设备, 2000, 21(4): 35-38. Hu Zhixin, Zhang Ling, Qiao Xueguang, et al. Applications of distributed fiber Bragg grating sensors in inspection of oil & gas pipeline[J]. Pipeline Technique and Equipment, 2000, 21(4): 35-38
[75] 王静. 光纤光栅多参数传感理论技术研究及在地下工程灾害监测中 的应用[D]. 济南: 山东大学, 2011. Wang Jing. Study on optical fiber Bragg grating muti-parameter sensing theory and technology and its application in monitoring underground engineering disasters[D]. Jinan: Shandong University, 2011.
[76] Mescia L, Prudenzano F. Advances on optical fiber sensors[J]. Fibers, 2013, 2(1): 1-23.
[77] Lin W T, Zhang C X, Li L J, et al. Review on development and applications of fiber-optic sensors[C]. 2012 Symposium on Photoncs a ectronics, Shanghai, China, May 21-23, 2012.
[78] 陈海峰, 肖立志, 张元中, 等. 光纤Bragg 光栅在油气工业中的若干 应用及进展[J]. 地球物理学进展, 2006, 21(2): 572-577. Chen Haifeng, Xiao Lizhi, Zhang Yuanzhong, et al. Applications and advance of fiber Bragg grating in oil and gas industry[J]. Progress in Geophysics, 2006, 21(2): 572-577.
[79] Sanada H, Sugita Y, Kashiwai Y. Development of a multi- interval displacement sensor using fiber Bragg grating technology[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 54(2012): 27-36.
[80] Negri L, Nied A, Kalinowski H, et al. Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement[J]. Sensors, 2011, 11(4): 3466-3482.
[81] Wild G, Hinckley S. Acousto-ultrasonic optical fiber sensors: Overview and state- of- the- art[J]. Sensors Journal, IEEE, 2008, 8(7): 1184- 1193.
[82] Abdi A M, Suzuki S, Schulzgen A, et al. Modeling, design, fabrication, and testing of a fiber Bragg grating strain sensor array[J]. Applied Optics, 2007, 46(14): 2563-2574.
[83] Zhang A P, Gao S, Yan G, et al. Advances in optical fiber Bragg grating sensor technologies[J]. Photonic Sensors, 2012, 2(1): 1-13.
[84] 李琦, 陈征澳, 张九天, 等. 中国CCUS技术路线图未来版的(更新) 启示——基于对世界CCS路线图透视分析[J]. 低碳世界, 2014(13): 7-8. Li Qi, Chen Zheng'ao, Zhang Jiutian, et al. Inspiration to a future update of CCUS technology roadmap in China: Based a synthetic analysis on global CCS roadmaps[J]. Low Carbon World, 2014(13): 7- 8.
[85] 李琦, 刘桂臻, 张建, 等. 二氧化碳地质封存环境监测现状及建议[J]. 地球科学进展, 2013, 28(6): 718-727. Li Qi, Liu Guizhen, Zhang Jian, et al. Status and suggestion of environmental monitoring for CO2 geological storage[J]. Advances in Earth Science, 2013, 28(6): 718-727.
[86] 李琦, 魏亚妮. 二氧化碳地质封存联合深部咸水开采技术进展[J]. 科 技导报, 2013, 31(27): 65-70. Li Qi, Wei Yani. Progress in combination of CO2 geological storage and deep salinewater recovery [J]. Science & Technology Review, 2013, 31(27): 65-70.
[87] Li Q, Wei Y N, Liu G Z, et al. Combination of CO2 geological storage with deep saline water recovery in western China: Insights from numerical analyses[J]. Applied Energy, 2014, 116: 101-110.
[88] Li Q, Liu G Z, Liu X, et al. Application of a health, safety, and environmental screening and ranking framework to the Shenhua CCS project[J]. International Journal of Greenhouse Gas Control, 2013, 17: 504-514.
[89] Wu Z S, Zhang H. A standard test method for evaluating the crack monitoring performance of distributed fiber optic sensors[C]. 3rd International Conference on Structure Health Monitoring & Intelligent Infrastructure, Manitoba, Canada, November 13-16, 2007.
文章导航

/