[1] 李正东, 李懋, 潘根兴, 等. 作物秸秆还田的新问题——对河南商丘地 区农民的问卷调查[J]. 中国农学通报, 2013, 29(32): 204-208. Li Zhengdong, Li Mao, Pan Genxing, et al. Challenges for crop straw return: A questionnaire survey on farmers'vision from Shangqiu Municipality, Henan Province[J]. Chinese Agricultural Science Bulletin, 2013, 29(32): 204-208.
[2] 郑晋鸣, 柏程伟. 秸秆再调查[N]. 光明日报, 2014-02-12(10). Zheng Jinmin, Bo Chengwei. A revisit to crop straw banning[N]. Guangming Daily, 2014-02-12(10).
[3] 朱彬, 苏继锋, 韩志伟, 等. 秸秆焚烧导致南京及周边地区一次严重空 气污染过程的分析[J]. 中国环境科学, 2010, 30(5): 585-592. Zhu Bin, Su Jifeng, Han Zhiwei, et al. A analysis of a severe air pollution event resulted from straw burning beyond Nanjing metropolis[J]. Chinese Journal of Environment Sciences, 2010, 30(5): 585-592.
[4] 耿诺. 直升机监测烧秸秆防治大气污染[N]. 北京日报, 2014-06-26 (3). Geng Nuo. Helicopter-aid monitoring of air pollution from crop straw burning[N]. Beijing Daily, 2014-06-26(3).
[5] 李廉明, 余春江, 柏继松. 中国秸秆直燃发电技术现状[J]. 化工进展, 2010, 29: 84-90. Li Lianming, Yu Chunjiang, Bo Jisong. The sate-of-art of power generation from direct combustion of straw biomass in China[J]. Advances in Chemical Engineering, 2010, 29: 84-90
[6] 崔文文, 梁军锋, 杜连柱, 等. 中国规模化秸秆沼气工程现状及存在问 题[J]. 中国农学通报, 2013, 29(11): 121-125. Cui Wenwen, Liang Junfeng, Du Lianzhu, et al. The current situation and problems of large scale straw biogas engineering in China[J]. Chinese Agricultural Science Bulletin, 2013, 29(11): 121-125.
[7] Marris E. Putting the carbon black: Black is the new green[J]. Nature, 2006, 442(7103): 624-626.
[8] 中华人民共和国国家发展和改革委员会. 国家重点推广的低碳 技术目录[EB/OL]. 2014-08-25. http://www.sdpc.gov.cn/gzdt/201409/ t20140905_625018.html. National Development and Reform Commission, Peoples Republic of China. A catalog of state approved key low carbon technologies for out reaching[EB/OL]. 2014- 08- 25. http://www.sdpc.gov.cn/gzdt/201409/ t20140905_625018.html.
[9] 张阿凤, 程琨, 潘根兴, 等. 秸秆生物黑炭农业应用的固碳减排计量方 法学探讨[J]. 农业环境科学学报, 2011, 30(9): 1811-1815. Zhang Afeng, Cheng Kun, Pan Genxing, et al. A methodology of carbon accounting of crop starw biochar and the application to agriculture[J]. Journal of Agro-Environment Sciences, 2011, 30(9): 1811-1815.
[10] Smith P, House J I, Bustamante M, et al. Global change pressures on soils from land use and management[J]. Global Change Biology, 2015 (In press).
[11] Lehmann J, Joseph S. Biochar for environment management: Science and technology[M]. London: Earth Scan, 2009.
[12] Lehmann J. A handful of carbon[J]. Nature, 2007, 447: 143-144.
[13] IPCC. Climate change 2013: The physical science basis[C]//Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 1535.
[14] Woolf D, Amonette J E, Street-Perrott F A, et al. Sustainable biochar to mitigate global climate change[J]. Nature Communications, doi: 10.1038/ncomms1053.
[15] International Energy Agency. Technology roadmap: Carbon capture and storage[M]. Paris, France: International Energy Agency, 2013.
[16] Sohi S P. Carbon storage with benefits[J]. Science, 2012, 338(6110): 1034-1035.
[17] Shackley S J, Sohi S P. An assessment of the benefits and issues associated with the application of biochar to soil[M]. London, UK: Department for Environment, Food and Rural Affairs, 2010.
[18] 潘根兴, 林振衡, 李恋卿, 等. 试论我国农业和农村有机废弃物生物 质碳产业化[J]. 中国农业科技导报, 2011, 13(1): 75- 82. Pan Genxing, Lin Zhengheng, Li Lianqing, et al. On industrialization of biomass carbonization via pyrolysis of biowaste from agriculture and rural sector[J]. Journal of Agricultural Science and Technology, 2011, 13(1): 75- 82.
[19] Zhou T, Pan G X. Li L Q, et al. Changes in greenhouse gas evolution in heavy metal polluted paddy soils with rice straw return: A laboratory incubation study[J]. European Journal of Soil Biology, 2014, 63: 1-6.
[20] Liu X Y, Li L Q, Chen D, et al. Effect of biochar amendment on soil silicon availability and rice uptake[J]. Journal of Plant Nutrition and Soil Science, 2014, 177: 91-96.
[21] Bian R J, Chen D, Liu X Y, et al. Biochar soil amendment as a solution to prevent Cd-tainted rice from China results from a crosssite field experiment[J]. Ecological Engineering, 2013, 58: 378-383.
[22] Liu X Y, Qu J J, Li L Q, et al. Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies?- A cross site field experiment from South China[J]. Ecological Engineering, 2012, 42: 168-173.
[23] Huang M, Yang L, Qin H, et al. Quantifying the effect of biochar amendment on soil quality and crop productivity in Chinese rice paddies[J]. Field Crops Research, 2013, 11(154): 172-177.
[24] Chen J, Liu X Y, Zheng J W, et al. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China[J]. Applied Soil Ecology, 2013, 71: 33-44.
[25] Zhang A F, Liu Y M, Pan G X, et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J]. Plant and Soil, 2012, 351: 263-275.
[26] Cui L Q, Li L Q, Zhang A F, et al. Biochar amendment greatly reduces rice Cd uptake in a contaminated paddy soil: A two- year field experiment[J]. BioResources, 2011, 6: 2605-2618.
[27] Joseph S, Graber E R, Chia C, et al. Shifting paradigms: development of high- efficiency biochar fertilizers based on nano- structures and soluble components[J]. Carbon Management, 2013, 4(3): 323-343.
[28] Qian L, Chen L, Joseph S, et al. Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture: A field experiment in a rice paddy from Anhui, China[J]. Carbon Management, 2014, 5(2): 145-154.
[29] Schmidt H P. 55 uses of biochar[J]. Ithaka Journal, 2012, 1: 286-289.