学术聚焦

热裂解生物质炭产业化:秸秆禁烧与绿色农业新途径

  • 潘根兴 ,
  • 李恋卿 ,
  • 刘晓雨 ,
  • 程琨 ,
  • 卞荣军 ,
  • 吉春颖 ,
  • 郑聚峰 ,
  • 张旭辉 ,
  • 郑金伟
展开
  • 南京农业大学农业资源与生态环境研究所, 南京210095
潘根兴,教授,研究方向为农业资源与生态环境,电子信箱:pangenxing@aliyun.com

收稿日期: 2015-02-25

  修回日期: 2015-06-05

  网络出版日期: 2015-07-25

基金资助

教育部博士点基金重点项目(20120097130003)

Industrialization of biochar from biomass pyrolysis:A new option for straw burning ban and green agriculture of China

  • PAN Genxing ,
  • LI Lianqing ,
  • LIU Xiaoyu ,
  • CHENG Kun ,
  • BIAN Rongjun ,
  • JI Chunying ,
  • ZHENG Jufeng ,
  • ZHANG Xuhui ,
  • ZHENG Jinwei
Expand
  • Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China

Received date: 2015-02-25

  Revised date: 2015-06-05

  Online published: 2015-07-25

摘要

秸秆处理是当前中国农业与环境面临的重大挑战.分析了秸秆处理与禁烧存在的机制性困难,认为秸秆处理需要从市场经济规律寻求产业化解决途径,关键是能源利用下养分资源重回农业循环;介绍了生物质限氧热裂解新技术特点及其在秸秆处理中的优势,讨论了其产业主要产品——生物质炭的土壤和农业功效,分析了秸秆气炭联产多产品产业链的产业化前景,提出秸秆热裂解生物质炭产业化提供了既处理秸秆废弃物又促进农业增产优质安全的新技术选择,形成了以生物质炭土壤施用和生物质炭基肥料生产应用为中心的绿色农业新途径.建议国家进一步构建和完善秸秆禁烧大环境下秸秆处理补贴政策,加大秸秆收储配套服务,强化树立已经初现的秸秆生物质热裂解产业优势,通过绿色农业市场化发展带动解决秸秆问题,服务中国可持续农业.

本文引用格式

潘根兴 , 李恋卿 , 刘晓雨 , 程琨 , 卞荣军 , 吉春颖 , 郑聚峰 , 张旭辉 , 郑金伟 . 热裂解生物质炭产业化:秸秆禁烧与绿色农业新途径[J]. 科技导报, 2015 , 33(13) : 92 -101 . DOI: 10.3981/j.issn.1000-7857.2015.13.015

Abstract

Treatment of crop straw has been an increasingly great challenge for China's agriculture and rural environment in the past decade. To break up institutional obstacles existing in straw treatment and burning ban, industrialized treatment for commercialized products has to be developed in line with market economy. Such industrialized treatment should focus on balanced utilization of energy and nutrients recycled in agriculture. In this review, biomass pyrolysis is introduced and its merits in straw treatment are discussed in detail. Addressing the properties and functions of biochar in soils and the agro-environment, we review the development of straw pyrolysis and biochar production, focusing on soil quality improvement and safe crop production in green agriculture. Industrialization of biomass pyrolysis and biochar production offers safe treatment of crop straw as well as new resources for agricultural production as biochar can be used to improve soil fertility, providing a green and innovative way for crop straw recycling. In the context of straw burning ban, the government is suggested to establish and improve subsidy policies for straw treatment, enhance supporting services for straw collection, and encourage the emerging industrial advantages of biomass pyrolysis to solve the problem of straw treatment through marketized development of green agriculture for developing sustainable agriculture in China.

参考文献

[1] 李正东, 李懋, 潘根兴, 等. 作物秸秆还田的新问题——对河南商丘地 区农民的问卷调查[J]. 中国农学通报, 2013, 29(32): 204-208. Li Zhengdong, Li Mao, Pan Genxing, et al. Challenges for crop straw return: A questionnaire survey on farmers'vision from Shangqiu Municipality, Henan Province[J]. Chinese Agricultural Science Bulletin, 2013, 29(32): 204-208.
[2] 郑晋鸣, 柏程伟. 秸秆再调查[N]. 光明日报, 2014-02-12(10). Zheng Jinmin, Bo Chengwei. A revisit to crop straw banning[N]. Guangming Daily, 2014-02-12(10).
[3] 朱彬, 苏继锋, 韩志伟, 等. 秸秆焚烧导致南京及周边地区一次严重空 气污染过程的分析[J]. 中国环境科学, 2010, 30(5): 585-592. Zhu Bin, Su Jifeng, Han Zhiwei, et al. A analysis of a severe air pollution event resulted from straw burning beyond Nanjing metropolis[J]. Chinese Journal of Environment Sciences, 2010, 30(5): 585-592.
[4] 耿诺. 直升机监测烧秸秆防治大气污染[N]. 北京日报, 2014-06-26 (3). Geng Nuo. Helicopter-aid monitoring of air pollution from crop straw burning[N]. Beijing Daily, 2014-06-26(3).
[5] 李廉明, 余春江, 柏继松. 中国秸秆直燃发电技术现状[J]. 化工进展, 2010, 29: 84-90. Li Lianming, Yu Chunjiang, Bo Jisong. The sate-of-art of power generation from direct combustion of straw biomass in China[J]. Advances in Chemical Engineering, 2010, 29: 84-90
[6] 崔文文, 梁军锋, 杜连柱, 等. 中国规模化秸秆沼气工程现状及存在问 题[J]. 中国农学通报, 2013, 29(11): 121-125. Cui Wenwen, Liang Junfeng, Du Lianzhu, et al. The current situation and problems of large scale straw biogas engineering in China[J]. Chinese Agricultural Science Bulletin, 2013, 29(11): 121-125.
[7] Marris E. Putting the carbon black: Black is the new green[J]. Nature, 2006, 442(7103): 624-626.
[8] 中华人民共和国国家发展和改革委员会. 国家重点推广的低碳 技术目录[EB/OL]. 2014-08-25. http://www.sdpc.gov.cn/gzdt/201409/ t20140905_625018.html. National Development and Reform Commission, Peoples Republic of China. A catalog of state approved key low carbon technologies for out reaching[EB/OL]. 2014- 08- 25. http://www.sdpc.gov.cn/gzdt/201409/ t20140905_625018.html.
[9] 张阿凤, 程琨, 潘根兴, 等. 秸秆生物黑炭农业应用的固碳减排计量方 法学探讨[J]. 农业环境科学学报, 2011, 30(9): 1811-1815. Zhang Afeng, Cheng Kun, Pan Genxing, et al. A methodology of carbon accounting of crop starw biochar and the application to agriculture[J]. Journal of Agro-Environment Sciences, 2011, 30(9): 1811-1815.
[10] Smith P, House J I, Bustamante M, et al. Global change pressures on soils from land use and management[J]. Global Change Biology, 2015 (In press).
[11] Lehmann J, Joseph S. Biochar for environment management: Science and technology[M]. London: Earth Scan, 2009.
[12] Lehmann J. A handful of carbon[J]. Nature, 2007, 447: 143-144.
[13] IPCC. Climate change 2013: The physical science basis[C]//Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 1535.
[14] Woolf D, Amonette J E, Street-Perrott F A, et al. Sustainable biochar to mitigate global climate change[J]. Nature Communications, doi: 10.1038/ncomms1053.
[15] International Energy Agency. Technology roadmap: Carbon capture and storage[M]. Paris, France: International Energy Agency, 2013.
[16] Sohi S P. Carbon storage with benefits[J]. Science, 2012, 338(6110): 1034-1035.
[17] Shackley S J, Sohi S P. An assessment of the benefits and issues associated with the application of biochar to soil[M]. London, UK: Department for Environment, Food and Rural Affairs, 2010.
[18] 潘根兴, 林振衡, 李恋卿, 等. 试论我国农业和农村有机废弃物生物 质碳产业化[J]. 中国农业科技导报, 2011, 13(1): 75- 82. Pan Genxing, Lin Zhengheng, Li Lianqing, et al. On industrialization of biomass carbonization via pyrolysis of biowaste from agriculture and rural sector[J]. Journal of Agricultural Science and Technology, 2011, 13(1): 75- 82.
[19] Zhou T, Pan G X. Li L Q, et al. Changes in greenhouse gas evolution in heavy metal polluted paddy soils with rice straw return: A laboratory incubation study[J]. European Journal of Soil Biology, 2014, 63: 1-6.
[20] Liu X Y, Li L Q, Chen D, et al. Effect of biochar amendment on soil silicon availability and rice uptake[J]. Journal of Plant Nutrition and Soil Science, 2014, 177: 91-96.
[21] Bian R J, Chen D, Liu X Y, et al. Biochar soil amendment as a solution to prevent Cd-tainted rice from China results from a crosssite field experiment[J]. Ecological Engineering, 2013, 58: 378-383.
[22] Liu X Y, Qu J J, Li L Q, et al. Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies?- A cross site field experiment from South China[J]. Ecological Engineering, 2012, 42: 168-173.
[23] Huang M, Yang L, Qin H, et al. Quantifying the effect of biochar amendment on soil quality and crop productivity in Chinese rice paddies[J]. Field Crops Research, 2013, 11(154): 172-177.
[24] Chen J, Liu X Y, Zheng J W, et al. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China[J]. Applied Soil Ecology, 2013, 71: 33-44.
[25] Zhang A F, Liu Y M, Pan G X, et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J]. Plant and Soil, 2012, 351: 263-275.
[26] Cui L Q, Li L Q, Zhang A F, et al. Biochar amendment greatly reduces rice Cd uptake in a contaminated paddy soil: A two- year field experiment[J]. BioResources, 2011, 6: 2605-2618.
[27] Joseph S, Graber E R, Chia C, et al. Shifting paradigms: development of high- efficiency biochar fertilizers based on nano- structures and soluble components[J]. Carbon Management, 2013, 4(3): 323-343.
[28] Qian L, Chen L, Joseph S, et al. Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture: A field experiment in a rice paddy from Anhui, China[J]. Carbon Management, 2014, 5(2): 145-154.
[29] Schmidt H P. 55 uses of biochar[J]. Ithaka Journal, 2012, 1: 286-289.
文章导航

/