专题论文

氧化石墨烯基水处理膜研究进展

  • 芦瑛 ,
  • 张林 ,
  • 李明 ,
  • 侯立安
展开
  • 1. 浙江大学化学工程与生物工程学院, 杭州, 310027;
    2. 第二炮兵工程大学3系, 西安, 710025
芦瑛,硕士研究生,研究方向为含氧化石墨烯基钠滤膜的制备与应用,电子信箱:luying008@gmail.com

收稿日期: 2015-04-18

  修回日期: 2015-06-23

  网络出版日期: 2015-08-14

基金资助

国家自然科学基金重点项目(51238006,L1422037);中国工程科技中长期发展战略研究项目(2014-zcp-10)

Research progress of graphene oxide based membrane in water treatment

  • LU Ying ,
  • ZHANG Lin ,
  • LI Ming ,
  • HOU Li'an
Expand
  • 1. College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China;
    2. Xi'an High-Tech Institute, Xi'an 710025, China

Received date: 2015-04-18

  Revised date: 2015-06-23

  Online published: 2015-08-14

摘要

氧化石墨烯(GO)具有片层薄、亲水性好、水分子在其片层间运动速度快等特点,通过调节GO 膜片层间隙尺寸可实现对溶质的截留,因而在水处理方面表现出优异的分离性能。本文综述了氧化石墨烯基膜的制备方法,包括真空抽滤法、喷涂法、旋涂法和浸涂法和层层自主装法等。介绍了氧化石墨烯基膜在反渗透、纳滤、渗透汽化等方面的研究进展,并对未来在水处理领域的应用进行了展望。

本文引用格式

芦瑛 , 张林 , 李明 , 侯立安 . 氧化石墨烯基水处理膜研究进展[J]. 科技导报, 2015 , 33(14) : 32 -35 . DOI: 10.3981/j.issn.1000-7857.2015.14.005

Abstract

The graphene oxide(GO) is a one-atom thick nanosheet with good hydrophilic properties and the water molecules move fast between GO layers. Adjusting the distance between GO membranes can achieve a good retention of the solute, with excellent separation performance in the water treatment. This paper reviews the preparation methods of GO-basedmembranes, including the vacuum filtration, the spray coating, the spin coating, the dip coating and the layer by layer self-assembly method. In addition, the research progress of GO-based membranes in reverse osmosis, nanofiltration and pervaporation is discussed in detail. The future applications of GO-based membranes in water treatment are discussed as well.

参考文献

[1] Novoselov K, Geim A K, Morozov S, et al. Two- dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438 (7065): 197- 200.
[2] Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature nanotechnology, 2008, 3(2): 101-105.
[3] Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature nanotechnology, 2008, 3(5): 270-274.
[4] Huang H, Mao Y, Ying Y, et al. Salt concentration, ph and pressure controlled separation of small molecules through lamellar graphene oxide membranes[J]. Chem Commun, 2013, 49(53): 5963-5965.
[5] Han Y, Xu Z, Gao C. Ultrathin graphene nanofiltration membrane for water purification[J]. Advanced Functional Materials, 2013, 23(29): 3693-3700.
[6] Gao S J, Qin H, Liu P, et al. Swcnt-intercalated go ultrathin films for ultrafast separation of molecules[J]. Journal of Materials Chemistry A, 2015, 3(12): 6649-6654.
[7] Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters, 2008, 8(1): 323-327.
[8] Kim H W, Yoon H W, Yoon S-M, et al. Selective gas transport through few-layered graphene and graphene oxide membranes[J]. Science, 2013, 342(6154): 91-95.
[9] Becerril H A, Mao J, Liu Z, et al. Evaluation of solution- processed reduced graphene oxide films as transparent conductors[J]. ACS Nano, 2008, 2(3): 463-470.
[10] Gilje S, Han S, Wang M, et al. A chemical route to graphene for device applications[J]. Nano Letters, 2007, 7(11): 3394-3398.
[11] Pham V H, Cuong T V, Hur S H, et al. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating[J]. Carbon, 2010, 48(7): 1945-1951.
[12] Hu M, Mi B. Enabling graphene oxide nanosheets as water separation membranes[J]. Environmental Science & Technology, 2013, 47(8): 3715- 3723.
[13] KannamSK,ToddB,HansenJS,etal.Slipflowingraphene nanochannels[J]. The Journal of Chemical Physics, 2011, 135(14): 144701.
[14] Mi B. Graphene oxide membranes for ionic and molecular sieving[J]. Science, 2014, 343(6172): 740-742.
[15] Qiu L, Zhang X, Yang W, et al. Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration[J]. Chem Commun, 2011, 47(20): 5810-5812.
[16] HanY,JiangY,GaoC.High-fluxgrapheneoxidenanofiltration membrane intercalated by carbon nanotubes[J]. Acs Applied Materials & Interfaces, 2015, 7(15): 8147-8155.
[17] Nair R, Wu H, Jayaram P, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335 (6067): 442-444.
[18] Hung W- S, An Q- F, De Guzman M, et al. Pressure- assisted selfassembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide[J]. Carbon, 2014, 68: 670-677.
[19] Tang Y P, Paul D R, Chung T S. Free-standing graphene oxide thin films assembled by a pressurized ultrafiltration method for dehydration of ethanol[J]. Journal of Membrane Science, 2014, 458: 199-208.
[20] Lou Y, Liu G, Liu S, et al. A facile way to prepare ceramic-supported graphene oxide composite membrane via silane- graft modification[J]. Applied Surface Science, 2014, 307: 631-637.
[21] Zhang J, Xu Z, Shan M, et al. Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti- fouling mechanism of polyvinylidene fluoride ultrafiltration membranes[J]. Journal of Membrane Science, 2013, 448: 81-92.
[22] Ganesh B, Isloor A M, Ismail A. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane[J]. Desalination, 2013, 313: 199-207.
[23] Wang Z, Yu H, Xia J, et al. Novel go-blended pvdf ultrafiltration membranes[J]. Desalination, 2012, 299: 50-54.
[24] Zhang J, Xu Z, Mai W, et al. Improved hydrophilicity, permeability, antifouling and mechanical performance of pvdf composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials[J]. Journal of Materials Chemistry A, 2013, 1(9): 3101-3111.
文章导航

/