专题论文

18-冠-6/KOH 络合体系催化制备高通量聚酰胺反渗透膜

  • 黄海 ,
  • 李明 ,
  • 张林 ,
  • 侯立安
展开
  • 1. 浙江大学化学工程与生物工程学院, 杭州310027;
    2. 第二炮兵工程大学3系, 西安710025
黄海,博士研究生,研究方向为高性能耐氯反渗透膜设计与制备,电子信箱:11228007@zju.edu.cn

收稿日期: 2015-05-13

  修回日期: 2015-06-11

  网络出版日期: 2015-08-14

基金资助

国家自然科学基金资助项目(51238006);高等学校博士学科点专项科研基金项目(20130101110064)

Preparation of polyamide reverse osmosis membrane by using 18-crown-6/KOH complex catalyst

  • HUANG Hai ,
  • LI Ming ,
  • ZHANG Lin ,
  • HOU Li'an
Expand
  • 1. College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, China;
    2. Xi'an High-Tech Institute, Xi'an 710025, China

Received date: 2015-05-13

  Revised date: 2015-06-11

  Online published: 2015-08-14

摘要

反渗透膜技术是一种重要的纯水供应技术,制备高通量反渗透膜成为研究热点。采用冠醚(18-crown-6)与KOH 的络合性缚酸剂催化界面聚合反应制备聚酰胺反渗透膜,利用18-crown-6 能与缚酸剂无机碱(KOH)形成络合物,加速KOH 从水相到有机相的扩散,可以促进聚合反应的进行。通过此方法制备得到了厚度更薄、表面适度水解的分离膜,明显提高了膜的水通量。通过扫描电子显微镜和X 射线光电子能谱技术显示,冠醚的添加可以有效抑制KOH 导致的聚合单体的水解,保证膜具有合理的离子选择性,解决了使用纯KOH 做缚酸剂时会明显降低膜分离性能的问题,对NaCl 的截留率保持在90%以上,使用Cs+作为截留离子发现,该膜对Cs+同样具有良好的截留能力,说明缚酸剂对反渗透膜分离性能的改变基本不受电解质类型的影响。

本文引用格式

黄海 , 李明 , 张林 , 侯立安 . 18-冠-6/KOH 络合体系催化制备高通量聚酰胺反渗透膜[J]. 科技导报, 2015 , 33(14) : 36 -40 . DOI: 10.3981/j.issn.1000-7857.2015.14.006

Abstract

The reverse osmosis membrane technology plays an important role in the supply of pure water. The high water production is always desirable. In this study, a new acid acceptor consisting of the crown ether (18-crown-6)/KOH is used to catalyze the interfacial polymerization reaction for the polyamide reverse osmosis membrane fabrication to increase the membrane flux. The 18- crown-6 and the KOH will form a complex compound, to help the diffusion of the KOH from the aqueous phase to the organic phase, so that the KOH can work more efficiently to catalyze the polymerization. Meanwhile, the 18-crown-6 can effectively inhibit the excess hydrolysis of the TMC from the KOH, preventing a significant deterioration in the ion rejection of the membrane. To verify the above reasoning, the SEM and XPS characterizations are used to show that the membrane has a thin and properly hydrolyzed surface morphology. The membrane performance test shows that the application of the (18-crown-6)/KOH as the acid acceptor can promote the membrane flux better (up to 72% increase) as compared with using only the KOH (38% increase). Moreover, the use of the (18- crown-6)/KOH can help the membrane to maintain a reasonable NaCl rejection of above 90%. That solves the problem of rejection deterioration when only the KOH is used as the acid acceptor with a rejection of below 60%. Although Cs+ has a smaller hydraulic radius than that of Na+, this kind of membrane also enjoys a similarly excellent separation behavior with respect to CsNO3. That means that the (18-crown-6)/KOH catalyst composition is effective and applicable in future.

参考文献

[1] Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452 (7185): 301-310.
[2] Kuehne M A, Song R Q, Li N N, et al. Flux enhancement in TFC RO membranes[J]. Environmental Progress, 2001, 20(1): 23-26.
[3] Navarro R, Gonzaleza M P, Saucedo I, et al. Effect of an acidic treatment on the chemical and charge properties of a nanofiltration membrane[J]. Journal of Membrane Science, 2008, 307(1): 136-148.
[4] Raval H D, Trivedi J J, Joshi S V, et al. Flux enhancement of thin film composite RO membrane by controlled chlorine treatment[J]. Desalination, 2010, 250(3): 945-949.
[5] Gorgojo P, Jimenez-Solomon M F, Livingston A G. Polyamide thin film composite membranes on cross-linked polyimide supports: Improvement of RO performance via activating solvent[J]. Desalination, 2014, 344: 181-188.
[6] Xiang J, Xie Z, Hoang M, et al. Effect of ammonium salts on the properties of poly(piperazineamide) thin film composite nanofiltration membrane[J]. Journal of Membrane Science, 2014, 465: 34-40.
[7] Karmakar R, Samanta A. Phase-transfer catalyst-induced changes in the absorption and fluorescence behavior of some electron donoracceptor molecules[J]. Journal of the American Chemical Society, 2001, 123(16): 3809-3817.
[8] 张林, 林赛赛, 魏平, 等. 4-二甲氨基吡啶催化的界面聚合法制备超 支化聚乙烯亚胺复合膜[J]. 催化学报, 2012, 33(10): 1730-1735. Zhang Lin, Lin Saisai, Wei Ping, et al. Preparation of hyperbranched polyethyleneimine composite membrane using interfacial polymerization catalyzed by 4- dimethylamiopryidine[J]. Chinese Journal of Catalysis, 2012, 33(10): 1730-1735.
[9] Kong C, Kanezashi M, Yamomoto T, et al. Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination[J]. Journal of Membrane Science, 2010, 362(1/2): 76-80.
[10] Duan M, Wang Z, Xu J, et al. Influence of hexamethyl phosphoramide on polyamide composite reverse osmosis membrane performance[J]. Separation and Purification Technology, 2010, 75(2): 145-155.
[11] Kim S H, Kwak S Y, Suzuki T. Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane[J]. Environmental Science &Technology, 2005, 39(6): 1764-1770.
[12] Ghosh A K, Jeong B H, Huang X, et al. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties[J]. Journal of Membrane Science, 2008, 311(1/2): 34-45.
[13] Cadotte J E. Reverse osmosis membrane: US Patent 4039440[P]. 1977-08-02.
[14] Petersen R J. Composite reverse-osmosis and nanofiltration membranes[J]. Journal of Membrane Science, 1993, 83(1): 81-150.
[15] Grinfeld A A, Artamkina G A, Beletskaya I P. Oxidation of nitrobenzenes by oxygen in a KOH-organic solvent-18-crown-6 ether system[J]. Bulletin of the Academy of Sciences of the Ussr Division of Chemical Science, 1982, 31(11): 2332-2332.
[16] Freger V. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization[J]. Langmuir, 2003, 19(11): 4791-4797.
[17] Gurzhiy V V, Tyumentseva O S, Krivovichev S V, et al. Novel type of molecular connectivity in one-dimensional uranyl compounds: K@(18- crown-6)(H2O) (UO2)(SeO4)(NO3), a new potassium uranyl selenate with 18-crown-6 ether[J]. Inorganic Chemistry Communications, 2014, 45: 93-96.
[18] Guida W C, Mathre D J. Phase-transfer alkylation of heterocycles in the presence of 18-crown-6 and potassium tert-butoxide[J]. Journal of Organic Chemistry, 1980, 45(16): 3172-3176.
[19] Zhu L, Zhu L, Jiang J, et al. Hydrophilic and anti- fouling polyethersulfone ultrafiltration membranes with poly(2- hydroxyethyl methacrylate) grafted silica nanoparticles as additive[J]. Journal of Membrane Science, 2014, 451: 157-168.
[20] Tansel B, Sager J, Rector T, et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes[J]. Separation and Purification Technology, 2006, 51(1): 40-47.
文章导航

/