[1] 蔺爱国, 刘培勇, 刘刚, 等. 膜分离技术在油田含油污水处理中的应用 研究进展[J]. 工业水处理, 2006, 26(1): 5-8. Lin Aiguo, Liu Peiyong, Liu Gang, et al. Progress of membrane separation technique in oil- bearing water treatment in oil fields[J]. Industrial Water Treatment, 2006, 26(1): 5-8.
[2] 黄美玲. 疏水亲油型杂化SiO2纳米纤维膜的制备及其乳液分离应用[D]. 上海: 东华大学, 2014. Huang Meiling. Synthesis of hydrophobic and oleophilic silica nanofiborous membranes for emulsified oil/water separation[D]. Shanghai: Donghua University, 2014.
[3] 王枢, 褚良银, 陈文梅, 等. 油水分离膜的研究新进展[J]. 油田化学, 2004, 20(4): 387-390. Wang Shu, Chu Liangyin, Chen Wenmei, et al. Advances in researches on oil/water separation membranes[J]. Oilfield Chemistry, 2004, 20(4): 387-390.
[4] 叶晓, 谢飞, 罗孝曦, 等. 聚合物膜材料在油水分离过程中的应用[J]. 化工进展, 2012, 31(增2):163-166. Ye Xiao, Xie Fei, Luo Xiaoxi, et al. Application of polymer membrane materials for oil/water separation[J]. Chemical Industry and Engineering Progress, 2012, 31(Suppl 2): 163-166.
[5] Meng H F, Wang S T, Xi J M, et al. Facile means of preparing superamphiphobic surfaces on common engineering metals[J]. The Journal of Physical Chemistry C, 2008, 112(30): 11454-11458.
[6] Marc H. Break-up of oil-in-water emulsions induced by permeation through a microfiltration membrane[J]. Journal of Membrane Science, 1995, 102(1995): 1-7.
[7] 袁腾, 陈卓, 周显宏, 等. 基于超亲水超疏油原理的网膜及其在油水分 离中的应用[J]. 化工学报, 2014, 65(6): 1943-1952. Yuan Teng, Chen Zhuo, Zhou Xianhong, et al. Coated mesh film based on superhydrophilic and superoleophobic principle and its application in oil-water separation[J]. Journal of Chemical Industry and Engineering, 2014, 65(6): 1943-1952.
[8] Kota Arun K, Tuteja Anish, Choi Wonjae, et al. Hygro- responsive membranes for effective oil-water separation[J]. Nature Communications, 2012, doi:10.1038/ncomms2027.
[9] Yang J, Zhang Z Z, Xu X H, et al. Superhydrophilic-superoleophobic coatings[J]. Journal of Materials Chemistry, 2012, 22(7): 2834-2837
[10] Zhang L, Zhang Z, Wang P. Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation[J]. NPG Asia Materials, 2012, 4(2): e8.
[11] Darmanin T, Guittard F. Superoleophobic polymers with metal ion affinity toward materials with both oleophobic and hydrophilic properties[J]. Journal of Colloid and Interface Science, 2013, 408 (2013): 101-106.
[12] Jin M, Wang J, Yao X, et al. Underwater oil capture by a threedimensional network architectured organosilane surface[J]. Advanced Materials, 2011, 23(25): 2861-2864.
[13] Yoon H, Na S H, Choi J Y, et al. Gravity-driven hybrid membrane for oleophobic- superhydrophilic oil- water separation and water purification by graphene[J]. Langmuir, 2014, 30(39): 11761-11769
[14] Raza A, Ding B, Zainab G, et al. In situ cross-linked superwetting nanofibrous membranes for ultrafast oil-water separation[J]. Journal of Materials Chemistry A, 2014, 2(26): 10137-10145.
[15] Zhu Y, Zhang F, Wang D, et al. A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency[J]. Journal of Materials Chemistry A, 2013, 1(18): 5758-5765.
[16] LiuQ,PatelAA,LiuL.Superhydrophilicandunderwater superoleophobic poly (sulfobetaine methacrylate) grafted glass fiber filters for oil-water separation[J]. ACS applied materials & interfaces, 2014, 6(12): 8996- 9003.
[17] ZhangW,ZhuY,LiuX,etal.Salt-inducedfabricationof superhydrophilic and underwater superoleophobic paa- g- pvdf membranes for effective separation of oil-in-water emulsions[J]. Angewandte Chemie International Edition, 2014, 53(3): 856-860.
[18] Wang L, Pan K, Li L, et al. Surface hydrophilicity and structure of hydrophilic modified pvdf membrane by nonsolvent induced phase separation and their effect on oil/water separation performance[J]. Industrial & Engineering Chemistry Research, 2014, 53(15): 6401- 6408.
[19] Yang J, Song H, Yan X, et al. Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation[J]. Cellulose, 2014, 21(3): 1851-1857.
[20] Yang H C, Pi J K, Liao K J, et al. Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12566-12572.
[21] Obaid M, Barakat N A M, Fadali O A, et al. Effective and reusable oil/ water separation membranes based on modified polysulfone electrospun nanofiber mats[J]. Chemical Engineering Journal, 2015, 259(2015): 449-456.
[22] Kong J, Yung K L, Xu Y, et al. Wettability transition of plasmatreated polystyrene micro/nano pillars-aligned patterns[J]. Express Polymer Letters, 2010, 4(12): 753-762.
[23] Tao M, Xue L, Liu F, et al. An intelligent superwetting pvdf membrane showing switchable transport performance for oil/water separation[J]. Advanced Materials, 2014, 26(18): 2943-2948.
[24] Ma W, Xu H, Takahara A. Substrate-independent underwater superoleophobic surfaces inspired by fish-skin and mussel-adhesives[J]. Advanced Materials Interfaces, doi:10.1002/admi.201300092.
[25] Zhang L, Zhong Y, Cha D, et al. A self-cleaning underwater superoleophobic mesh for oil- water separation[J]. Scientific Reports, 2013, doi:10.1038/srep02326.
[26] Tsougeni K, Papageorgiou D, Tserepi A, et al.“Smart”polymeric microfluidics fabricated by plasma processing: controlled wetting, capillary filling and hydrophobic valving[J]. Lab on a Chip, 2010, 10 (4): 462-469.
[27] Tsougeni K, Petrou P S, Tserepi A, et al. Nano- texturing of poly (methyl methacrylate) polymer using plasma processes and applications in wetting control and protein adsorption[J]. Microelectronic Engineering, 2009, 86(4): 1424-1427.
[28] Ellinas K, Tserepi A, Gogolides E. From superamphiphobic to amphiphilic polymeric surfaces with ordered hierarchical roughness fabricated with colloidal lithography and plasma nanotexturing[J]. Langmuir, 2011, 27(7): 3960-3969.
[29] Ruiz A, Valsesia A, Ceccone G, et al. Fabrication and characterization of plasma processed surfaces with tuned wettability[J]. Langmuir, 2007, 23(26): 12984-12989.
[30] Tao M, Xue L, Liu F, et al. An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation[J]. Advanced Materials, 2014, 26(18): 2943-2948.
[31] Pant R, Singha S, Bandyopadhyay A, et al. Investigation of static and dynamic wetting transitions of UV responsive tunable wetting surfaces[J]. Applied Surface Science, 2014, 292(2014): 777-781.
[32] Meng T, Xie R, Chen Y C, et al. A thermo-responsive affinity membrane with nano- structured pores and grafted poly(N- isopropylacrylamide) surface layer for hydrophobic adsorption [J]. Journal of Membrane Science, 2010, 349(1): 258-267.
[33] Kwak D, Han J T, Lee J H, et al. Facile control of thermo-responsive wettability through an all-electrostatic self-assembling process[J]. Surface Science, 2008, 602(19): 3100-3105.
[34] Yu S, Lü Z, Chen Z, et al. Surface modification of thin-film composite polyamide reverse osmosis membranes by coating Nisopropylacrylamide- co-acrylic acid copolymers for improved membrane properties[J]. Journal of Membrane Science, 2011, 371(1): 293-306.
[35] Wang B, Guo Z, Liu W. pH-responsive smart fabrics with controllable wettability in different surroundings[J]. RSC Advances, 2014, 4(28): 14684-14690.
[36] Cheng M, Liu Q, Ju G, et al. Bell-shaped superhydrophilicsuperhydrophobic- superhydrophilic double transformation on a pHresponsive smart surface[J]. Advanced Materials, 2014, 26(2): 306- 310.
[37] Zhang Q, Xia F, Sun T, et al. Wettability switching between high hydrophilicity at low pH and high hydrophobicity at high pH on surface based on pH-responsive polymer[J]. Chemical Communications, 2008 (10): 1199-1201.
[38] Jiang Y, Wang Z, Yu X, et al. Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH- responsive surfaces[J]. Langmuir, 2005, 21(5): 1986-1990.
[39] Wang B, Guo Z, Liu W. pH-responsive smart fabrics with controllable wettability in different surroundings[J]. RSC Advances, 2014, 4(28): 14684-14690.
[40] Wang L, Zhang X, Fu Y, et al. Bioinspired preparation of ultrathin SiO2 shell on ZnO nanowire array for ultraviolet-durable superhydrophobicity[J]. Langmuir, 2009, 25(23): 13619-13624.
[41] Sun W, Zhou S, You B, et al. A facile method for the fabrication of superhydrophobic films with multiresponsive and reversibly tunable wettability[J]. Journal of Materials Chemistry A, 2013, 1(9): 3146- 3154.
[42] Caputo G, Cingolani R, Cozzoli P D, et al. Wettability conversion of colloidal TiO2 nanocrystal thin films with UV-switchable hydrophilicity[J]. Physical Chemistry Chemical Physics, 2009, 11(19): 3692-3700.
[43] Beija M, Marty J D, Destarac M. Thermoresponsive poly (N- vinyl caprolactam)-coated gold nanoparticles: sharp reversible response and easy tunability[J]. Chemical Communications, 2011, 47(10): 2826- 2828.
[44] Christova D, Velichkova R, Loos W, et al. New thermo-responsive polymer materials based on poly (2-ethyl-2-oxazoline) segments[J]. Polymer, 2003, 44(8): 2255-2261.
[45] Deng K L, Tian H, Zhang P F, et al. Synthesis and characterization of a novel temperature-pH responsive copolymer of 2-hydroxypropyl acrylate and aminoethyl methacrylate hydrochloric salt[J]. Express Polym Lett, 2009, 3: 97-104.
[46] Bawa P, Pillay V, Choonara Y E, et al. Stimuli-responsive polymers and their applications in drug delivery[J]. Biomedical materials, 2009, 4(2): 022001.
[47] Liu H, Zhang X, Wang S, et al. Underwater thermoresponsive surface with switchable oil- wettability between superoleophobicity and superoleophilicity[J]. Small, doi: 10.1002/smll.201403190
[48] Xie D, Ye X, Ding Y, et al. Multistep thermosensitivity of poly (N-npropylacrylamide)- block- poly (N- isopropylacrylamide)- block- poly (N, N- ethylmethylacrylamide) triblock terpolymers in aqueous solutions as studied by static and dynamic light scattering[J]. Macromolecules, 2009, 42(7): 2715-2720.
[49] Wu S, Zhu X, Yang J, et al. A facile photopolymerization method for fabrication of pH and light dual reversible stimuli-responsive surfaces[J]. Chemical Communications, 2015.
[50] Xiang Y, Shen J, Wang Y, et al. A pH-responsive PVDF membrane with superwetting properties for the separation of oil and water[J]. RSC Advances, 2015, 5(30): 23530-23539.
[51] Cao Y, Liu N, Fu C, et al. Thermo and pH dual-responsive materials for controllable oil/water separation[J]. ACS applied materials & interfaces, 2014, 6(3): 2026-2030.
[52] Cheng Z, Wang J, Lai H, et al. pH-controllable on-demand oil/water separation on the switchable superhydrophobic/superhydrophilic and underwater low- adhesive superoleophobic copper mesh film[J]. Langmuir, 2015, 31(4): 1393-1399
[53] Yameen B, Ali M, Neumann R, et al. Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes[J]. Nano Letters, 2009, 9(7): 2788-2793.
[54] Bisht H S, Wan L, Mao G, et al. pH-Controlled association of PEGcontaining terpolymers of N-isopropylacrylamide and 1-vinylimidazole[J]. Polymer, 2005, 46(19): 7945-7952.
[55] Kazakov S, Kaholek M, Kudasheva D, et al. Poly (N-isopropylacrylamideco- 1-vinylimidazole) hydrogel nanoparticles prepared and hydrophobically modified in liposome reactors: Atomic force microscopy and dynamic light scattering study[J]. Langmuir, 2003, 19 (19): 8086-8093.
[56] Sui Z, Schlenoff J B. Controlling electroosmotic flow in microchannels with pH-responsive polyelectrolyte multilayers[J]. Langmuir, 2003, 19 (19): 7829-7831.