专题论文

油水分离膜的表/界面设计与结构调控

  • 刘璀静 ,
  • 徐丽 ,
  • 张培斌 ,
  • 朱利平 ,
  • 朱宝库
展开
  • 1. 浙江大学高分子科学与工程学系;高分子合成与功能构造教育部重点实验室, 杭州310027;
    2. 浙江大学化学工程与生物工程学院;化学工程联合国家重点实验室, 杭州310027
刘璀静,硕士研究生,研究方向为高分子分离膜材料,电子信箱:cjliu@zju.edu.cn

收稿日期: 2015-05-13

  修回日期: 2015-06-03

  网络出版日期: 2015-08-14

基金资助

国家自然科学基金项目(51273176);中央高校基本科研业务费资助项目(2014QNA4038)

The design of surface/interface of oil/water separation membranes and the structural adjustment

  • LIU Cuijing ,
  • XU Li ,
  • ZHANG Peibin ,
  • ZHU Liping ,
  • ZHU Baoku
Expand
  • 1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China;
    2. State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

Received date: 2015-05-13

  Revised date: 2015-06-03

  Online published: 2015-08-14

摘要

膜分离是含油污水深度处理的有效途径,油水分离膜是含油污水膜法处理的核心材料,其表/界面的结构和物化特征直接决定了油水分离的效率与膜材料使用寿命。本文综述了近年来油水分离膜表/界面设计与结构调控方面的研究进展。介绍了膜表面化学和拓扑结构对膜性能的影响,阐述了油水分离膜表/界面设计的原理、疏水膜的构建与亲水性反转、超亲水表面的制备,以及智能型油水分离膜的设计与制备。归纳了目前油水分离膜和含油污水膜法处理研究中存在的一些共性问题,包括定量研究和破乳机制研究缺乏、膜材料耐热性和耐化学清洗性不足等,对未来的发展趋势进行了展望。

本文引用格式

刘璀静 , 徐丽 , 张培斌 , 朱利平 , 朱宝库 . 油水分离膜的表/界面设计与结构调控[J]. 科技导报, 2015 , 33(14) : 51 -58 . DOI: 10.3981/j.issn.1000-7857.2015.14.009

Abstract

The membrane separation is a promising way for the treatment and reuse of oily wastewater. The membrane material plays a key role in the oil/water membrane separation and its surface/interfacial morphologies and physiochemical characteristics are responsible for the separation efficiency and the lifespan of the membrane. This paper reviews the recent advances in the design and the modulation of oil/water separation membrane surfaces and interfaces. The effects of the membrane surface chemistry and morphology on the membrane separation performances are summarized. The scientific fundamentals of the surface/interfacial design, the construction of the hydrophobic surface and the hydrophilic inversion, the preparation of the superhydrophilic surface and the stimuli- responsive membrane are discussed in detail. Some unsolved problems in oil/water separation materials and membrane techniques e.g. the development of the antifouling and chemically stable membrane materials, the thermally tolerant membranes, and the demulsification technique are addressed. Finally, the directions of further studies are proposed.

参考文献

[1] 蔺爱国, 刘培勇, 刘刚, 等. 膜分离技术在油田含油污水处理中的应用 研究进展[J]. 工业水处理, 2006, 26(1): 5-8. Lin Aiguo, Liu Peiyong, Liu Gang, et al. Progress of membrane separation technique in oil- bearing water treatment in oil fields[J]. Industrial Water Treatment, 2006, 26(1): 5-8.
[2] 黄美玲. 疏水亲油型杂化SiO2纳米纤维膜的制备及其乳液分离应用[D]. 上海: 东华大学, 2014. Huang Meiling. Synthesis of hydrophobic and oleophilic silica nanofiborous membranes for emulsified oil/water separation[D]. Shanghai: Donghua University, 2014.
[3] 王枢, 褚良银, 陈文梅, 等. 油水分离膜的研究新进展[J]. 油田化学, 2004, 20(4): 387-390. Wang Shu, Chu Liangyin, Chen Wenmei, et al. Advances in researches on oil/water separation membranes[J]. Oilfield Chemistry, 2004, 20(4): 387-390.
[4] 叶晓, 谢飞, 罗孝曦, 等. 聚合物膜材料在油水分离过程中的应用[J]. 化工进展, 2012, 31(增2):163-166. Ye Xiao, Xie Fei, Luo Xiaoxi, et al. Application of polymer membrane materials for oil/water separation[J]. Chemical Industry and Engineering Progress, 2012, 31(Suppl 2): 163-166.
[5] Meng H F, Wang S T, Xi J M, et al. Facile means of preparing superamphiphobic surfaces on common engineering metals[J]. The Journal of Physical Chemistry C, 2008, 112(30): 11454-11458.
[6] Marc H. Break-up of oil-in-water emulsions induced by permeation through a microfiltration membrane[J]. Journal of Membrane Science, 1995, 102(1995): 1-7.
[7] 袁腾, 陈卓, 周显宏, 等. 基于超亲水超疏油原理的网膜及其在油水分 离中的应用[J]. 化工学报, 2014, 65(6): 1943-1952. Yuan Teng, Chen Zhuo, Zhou Xianhong, et al. Coated mesh film based on superhydrophilic and superoleophobic principle and its application in oil-water separation[J]. Journal of Chemical Industry and Engineering, 2014, 65(6): 1943-1952.
[8] Kota Arun K, Tuteja Anish, Choi Wonjae, et al. Hygro- responsive membranes for effective oil-water separation[J]. Nature Communications, 2012, doi:10.1038/ncomms2027.
[9] Yang J, Zhang Z Z, Xu X H, et al. Superhydrophilic-superoleophobic coatings[J]. Journal of Materials Chemistry, 2012, 22(7): 2834-2837
[10] Zhang L, Zhang Z, Wang P. Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation[J]. NPG Asia Materials, 2012, 4(2): e8.
[11] Darmanin T, Guittard F. Superoleophobic polymers with metal ion affinity toward materials with both oleophobic and hydrophilic properties[J]. Journal of Colloid and Interface Science, 2013, 408 (2013): 101-106.
[12] Jin M, Wang J, Yao X, et al. Underwater oil capture by a threedimensional network architectured organosilane surface[J]. Advanced Materials, 2011, 23(25): 2861-2864.
[13] Yoon H, Na S H, Choi J Y, et al. Gravity-driven hybrid membrane for oleophobic- superhydrophilic oil- water separation and water purification by graphene[J]. Langmuir, 2014, 30(39): 11761-11769
[14] Raza A, Ding B, Zainab G, et al. In situ cross-linked superwetting nanofibrous membranes for ultrafast oil-water separation[J]. Journal of Materials Chemistry A, 2014, 2(26): 10137-10145.
[15] Zhu Y, Zhang F, Wang D, et al. A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency[J]. Journal of Materials Chemistry A, 2013, 1(18): 5758-5765.
[16] LiuQ,PatelAA,LiuL.Superhydrophilicandunderwater superoleophobic poly (sulfobetaine methacrylate) grafted glass fiber filters for oil-water separation[J]. ACS applied materials & interfaces, 2014, 6(12): 8996- 9003.
[17] ZhangW,ZhuY,LiuX,etal.Salt-inducedfabricationof superhydrophilic and underwater superoleophobic paa- g- pvdf membranes for effective separation of oil-in-water emulsions[J]. Angewandte Chemie International Edition, 2014, 53(3): 856-860.
[18] Wang L, Pan K, Li L, et al. Surface hydrophilicity and structure of hydrophilic modified pvdf membrane by nonsolvent induced phase separation and their effect on oil/water separation performance[J]. Industrial & Engineering Chemistry Research, 2014, 53(15): 6401- 6408.
[19] Yang J, Song H, Yan X, et al. Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation[J]. Cellulose, 2014, 21(3): 1851-1857.
[20] Yang H C, Pi J K, Liao K J, et al. Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12566-12572.
[21] Obaid M, Barakat N A M, Fadali O A, et al. Effective and reusable oil/ water separation membranes based on modified polysulfone electrospun nanofiber mats[J]. Chemical Engineering Journal, 2015, 259(2015): 449-456.
[22] Kong J, Yung K L, Xu Y, et al. Wettability transition of plasmatreated polystyrene micro/nano pillars-aligned patterns[J]. Express Polymer Letters, 2010, 4(12): 753-762.
[23] Tao M, Xue L, Liu F, et al. An intelligent superwetting pvdf membrane showing switchable transport performance for oil/water separation[J]. Advanced Materials, 2014, 26(18): 2943-2948.
[24] Ma W, Xu H, Takahara A. Substrate-independent underwater superoleophobic surfaces inspired by fish-skin and mussel-adhesives[J]. Advanced Materials Interfaces, doi:10.1002/admi.201300092.
[25] Zhang L, Zhong Y, Cha D, et al. A self-cleaning underwater superoleophobic mesh for oil- water separation[J]. Scientific Reports, 2013, doi:10.1038/srep02326.
[26] Tsougeni K, Papageorgiou D, Tserepi A, et al.“Smart”polymeric microfluidics fabricated by plasma processing: controlled wetting, capillary filling and hydrophobic valving[J]. Lab on a Chip, 2010, 10 (4): 462-469.
[27] Tsougeni K, Petrou P S, Tserepi A, et al. Nano- texturing of poly (methyl methacrylate) polymer using plasma processes and applications in wetting control and protein adsorption[J]. Microelectronic Engineering, 2009, 86(4): 1424-1427.
[28] Ellinas K, Tserepi A, Gogolides E. From superamphiphobic to amphiphilic polymeric surfaces with ordered hierarchical roughness fabricated with colloidal lithography and plasma nanotexturing[J]. Langmuir, 2011, 27(7): 3960-3969.
[29] Ruiz A, Valsesia A, Ceccone G, et al. Fabrication and characterization of plasma processed surfaces with tuned wettability[J]. Langmuir, 2007, 23(26): 12984-12989.
[30] Tao M, Xue L, Liu F, et al. An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation[J]. Advanced Materials, 2014, 26(18): 2943-2948.
[31] Pant R, Singha S, Bandyopadhyay A, et al. Investigation of static and dynamic wetting transitions of UV responsive tunable wetting surfaces[J]. Applied Surface Science, 2014, 292(2014): 777-781.
[32] Meng T, Xie R, Chen Y C, et al. A thermo-responsive affinity membrane with nano- structured pores and grafted poly(N- isopropylacrylamide) surface layer for hydrophobic adsorption [J]. Journal of Membrane Science, 2010, 349(1): 258-267.
[33] Kwak D, Han J T, Lee J H, et al. Facile control of thermo-responsive wettability through an all-electrostatic self-assembling process[J]. Surface Science, 2008, 602(19): 3100-3105.
[34] Yu S, Lü Z, Chen Z, et al. Surface modification of thin-film composite polyamide reverse osmosis membranes by coating Nisopropylacrylamide- co-acrylic acid copolymers for improved membrane properties[J]. Journal of Membrane Science, 2011, 371(1): 293-306.
[35] Wang B, Guo Z, Liu W. pH-responsive smart fabrics with controllable wettability in different surroundings[J]. RSC Advances, 2014, 4(28): 14684-14690.
[36] Cheng M, Liu Q, Ju G, et al. Bell-shaped superhydrophilicsuperhydrophobic- superhydrophilic double transformation on a pHresponsive smart surface[J]. Advanced Materials, 2014, 26(2): 306- 310.
[37] Zhang Q, Xia F, Sun T, et al. Wettability switching between high hydrophilicity at low pH and high hydrophobicity at high pH on surface based on pH-responsive polymer[J]. Chemical Communications, 2008 (10): 1199-1201.
[38] Jiang Y, Wang Z, Yu X, et al. Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH- responsive surfaces[J]. Langmuir, 2005, 21(5): 1986-1990.
[39] Wang B, Guo Z, Liu W. pH-responsive smart fabrics with controllable wettability in different surroundings[J]. RSC Advances, 2014, 4(28): 14684-14690.
[40] Wang L, Zhang X, Fu Y, et al. Bioinspired preparation of ultrathin SiO2 shell on ZnO nanowire array for ultraviolet-durable superhydrophobicity[J]. Langmuir, 2009, 25(23): 13619-13624.
[41] Sun W, Zhou S, You B, et al. A facile method for the fabrication of superhydrophobic films with multiresponsive and reversibly tunable wettability[J]. Journal of Materials Chemistry A, 2013, 1(9): 3146- 3154.
[42] Caputo G, Cingolani R, Cozzoli P D, et al. Wettability conversion of colloidal TiO2 nanocrystal thin films with UV-switchable hydrophilicity[J]. Physical Chemistry Chemical Physics, 2009, 11(19): 3692-3700.
[43] Beija M, Marty J D, Destarac M. Thermoresponsive poly (N- vinyl caprolactam)-coated gold nanoparticles: sharp reversible response and easy tunability[J]. Chemical Communications, 2011, 47(10): 2826- 2828.
[44] Christova D, Velichkova R, Loos W, et al. New thermo-responsive polymer materials based on poly (2-ethyl-2-oxazoline) segments[J]. Polymer, 2003, 44(8): 2255-2261.
[45] Deng K L, Tian H, Zhang P F, et al. Synthesis and characterization of a novel temperature-pH responsive copolymer of 2-hydroxypropyl acrylate and aminoethyl methacrylate hydrochloric salt[J]. Express Polym Lett, 2009, 3: 97-104.
[46] Bawa P, Pillay V, Choonara Y E, et al. Stimuli-responsive polymers and their applications in drug delivery[J]. Biomedical materials, 2009, 4(2): 022001.
[47] Liu H, Zhang X, Wang S, et al. Underwater thermoresponsive surface with switchable oil- wettability between superoleophobicity and superoleophilicity[J]. Small, doi: 10.1002/smll.201403190
[48] Xie D, Ye X, Ding Y, et al. Multistep thermosensitivity of poly (N-npropylacrylamide)- block- poly (N- isopropylacrylamide)- block- poly (N, N- ethylmethylacrylamide) triblock terpolymers in aqueous solutions as studied by static and dynamic light scattering[J]. Macromolecules, 2009, 42(7): 2715-2720.
[49] Wu S, Zhu X, Yang J, et al. A facile photopolymerization method for fabrication of pH and light dual reversible stimuli-responsive surfaces[J]. Chemical Communications, 2015.
[50] Xiang Y, Shen J, Wang Y, et al. A pH-responsive PVDF membrane with superwetting properties for the separation of oil and water[J]. RSC Advances, 2015, 5(30): 23530-23539.
[51] Cao Y, Liu N, Fu C, et al. Thermo and pH dual-responsive materials for controllable oil/water separation[J]. ACS applied materials & interfaces, 2014, 6(3): 2026-2030.
[52] Cheng Z, Wang J, Lai H, et al. pH-controllable on-demand oil/water separation on the switchable superhydrophobic/superhydrophilic and underwater low- adhesive superoleophobic copper mesh film[J]. Langmuir, 2015, 31(4): 1393-1399
[53] Yameen B, Ali M, Neumann R, et al. Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes[J]. Nano Letters, 2009, 9(7): 2788-2793.
[54] Bisht H S, Wan L, Mao G, et al. pH-Controlled association of PEGcontaining terpolymers of N-isopropylacrylamide and 1-vinylimidazole[J]. Polymer, 2005, 46(19): 7945-7952.
[55] Kazakov S, Kaholek M, Kudasheva D, et al. Poly (N-isopropylacrylamideco- 1-vinylimidazole) hydrogel nanoparticles prepared and hydrophobically modified in liposome reactors: Atomic force microscopy and dynamic light scattering study[J]. Langmuir, 2003, 19 (19): 8086-8093.
[56] Sui Z, Schlenoff J B. Controlling electroosmotic flow in microchannels with pH-responsive polyelectrolyte multilayers[J]. Langmuir, 2003, 19 (19): 7829-7831.
文章导航

/