专题论文

能源植物高粱基因组研究进展

  • 罗洪 ,
  • 张丽敏 ,
  • 夏艳 ,
  • 吴小园 ,
  • 王聪 ,
  • 刘智全 ,
  • 景海春
展开
  • 1. 中国科学院植物研究所北方资源植物重点实验室, 北京 100093;
    2. 中国科学院大学, 北京 100049
罗洪,博士,研究方向为生物信息,电子信箱:hong.luo@ibcas.ac.cn

收稿日期: 2015-06-30

  修回日期: 2015-07-21

  网络出版日期: 2015-08-28

An update on genome research of biofuel sorghum (Sorghum bicolour)

  • LUO Hong ,
  • ZHANG Limin ,
  • XIA Yan ,
  • WU Xiaoyuan ,
  • WANG Cong ,
  • LIU Zhiquan ,
  • JING Haichun
Expand
  • 1. Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-06-30

  Revised date: 2015-07-21

  Online published: 2015-08-28

摘要

回顾了高粱基因组学研究的发展进程, 概述了初期组学数据的积累、参考基因组的破译及新一代测序技术和数据分析方法引领下的组学研究进展;介绍了高粱基因组的结构, 从比较基因组学的角度, 分析了高粱基因组的进化及其特性;探讨了高粱功能基因组的研究方法和研究进展, 总结了已经发掘的高粱关键基因和遗传位点, 对高粱组学数据资源进行了归纳。对高粱基因组学的发展方向进行了展望。

本文引用格式

罗洪 , 张丽敏 , 夏艳 , 吴小园 , 王聪 , 刘智全 , 景海春 . 能源植物高粱基因组研究进展[J]. 科技导报, 2015 , 33(16) : 17 -26 . DOI: 10.3981/j.issn.1000-7857.2015.16.002

Abstract

Research of sorghum genomes has been accelerated by the development of next-generation sequencing technologies and bioinformatics toolsand has accumulated a large amount of genomics data. This review describes the structural and sequence characteristics of sorghum genome and discusses its evolutionary background from the perspective of comparative genomics. We also highlight new findings obtained through exploiting the genomic informationand future directions of sorghum genome research to develop it into a dedicated biofuel crop.

参考文献

[1] Belton P S, Taylor J R N. Sorghum and millets: Protein sources for Africa[J]. Trends in Food Science & Technology, 2004, 15(2): 94-98.
[2] Mann J A, Kimber C T, Miller F R. The origin and early cultivation of sorghums in Africa[EB/OL]. [2015-07-13]. http://hdlhandle net/1969.
[3] De Wet J. Systematics and evolution of Sorghum sect. Sorghum (Gramineae)[J]. American Journal of Botany, 1978, 65(4): 477-484.
[4] Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication[J]. Cell, 2006, 127(7): 1309-1321.
[5] Zhang Limin, Liu Zhiquan, Chen Bingru, et al. Current status and application prosepects of Csweet sorghum breeding in China[J]. Journal of China Agricultural University, 2012, 17(6): 76-82.
[6] 张彩霞, 谢高地, 李士美, 等. 中国能源作物甜高粱的空间适宜分布及乙醇生产潜力[J]. 生态学报, 2010, 30(17): 4765-4770. Zhang Caixia, Xie Gaodi, Li Shimei, et al. Spatial suitability and its bio-ethanol potential of sweet sorghum in China[J]. Acta Ecologica Sinica, 2010, 30(17): 4765-4770.
[7] Woo S S, Jiang J, Gill B S, et al. Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor[J]. Nucleic Acids Research, 1994, 22(23): 4922-4931.
[8] Lin Y R, Zhu L, Ren S, et al. A Sorghum propinquum BAC library, suitable for cloning genes associated with loss-of-function mutations during crop domestication[J]. Molecular Breeding, 1999, 5(6): 511-520.
[9] Peterson D G, Schulze S R, Sciara E B, et al. Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery[J]. Genome Research, 2002, 12(5): 795-807.
[10] Peterson D G, Wessler S R, Paterson A H. Efficient capture of unique sequences from eukaryotic genomes[J]. Trends in Genetics, 2002, 18 (11): 547-550.
[11] Pratt L H, Liang C, Shah M, et al. Sorghum expressed sequence tags identify signature genes for drought, pathogenesis, and skotomorphogenesis from a milestone set of 16, 801 unique transcripts[J]. Plant Physiology, 2005, 139(2): 869-884.
[12] Hulbert S H, Richter T E, Axtell J D, et al. Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes[J]. PNAS, 1990, 87(11): 4251-4255.
[13] Whitkus R, Doebley J, Lee M. Comparative genome mapping of sorghum and maize[J]. Genetics, 1992, 132(4): 1119-1130.
[14] Tao Y Z, Jordan D R, Henzell R G, et al. Construction of a genetic map in a sorghum recombinant inbred line using probes from different sources and its comparison with other sorghum maps[J]. Australian Journal of Agricultural Research, 1998, 49(4): 729-736.
[15] Boivin K, Deu M, Rami J F, et al. Towards a saturated sorghum map using RFLP and AFLP markers[J]. Theoretical and Applied Genetics, 1999, 98(2): 320-328.
[16] Menz M A, Klein R R, Mullet J E, et al. A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP (R), RFLP and SSR markers[J]. Plant Molecular Biology, 2002, 48(5): 483-499.
[17] Bowers J E, Abbey C, Anderson S, et al. A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses[J]. Genetics, 2003, 165(1): 367-386.
[18] Mace E S, Xia L, Jordan D R, et al. DArT markers: Diversity analyses and mapping in Sorghum bicolor[J]. BMC Genomics, 2008, 9: 26.
[19] Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 2005, 437 (7057): 3376-3380.
[20] Hunkapiller T, Kaiser R, Koop B, et al. Large-scale and automated DNA sequence determination[J]. Science, 1991, 254(5028): 59-67.
[21] Fedurco M, Romieu A, Williams S, et al. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies[J]. Nucleic Acids Research, 34(3): e22.
[22] Metzker M L. Sequencing technologies—The next generation[J]. Nature Reviews Genetics, 2010, 11(1): 31-46.
[23] Mardis E R. Next-generation DNA sequencing methods[J]. Annual Review of Genomics and Human Genetics, 2008, 9(1): 387-402.
[24] Shendure J, Ji H. Next-generation DNA sequencing[J]. Nature Biotechnology, 2008, 26(10): 1135-1145.
[25] Van Tassell C P, Smith T P L, Matukumalli L K, et al. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries[J]. Nature Methods, 2008, 5(3): 247-252.
[26] Ganal M W, Altmann T, Röder M S. SNP identification in crop plants[J]. Current Opinion in Plant Biology, 2009, 12(2): 211-217.
[27] Rounsley S D, Last R L. Shotguns and SNPs: How fast and cheap sequencing is revolutionizing plant biology[J]. Plant Journal, 2010, 61 (6): 922-927.
[28] Nielsen R, Paul J S, Albrechtsen A, et al. Genotype and SNP calling from next-generation sequencing data[J]. Nature Reviews Genetics, 2011, 12(6): 443-451.
[29] Spindel J, Wright M, Chen C, et al. Bridging the genotyping gap: Using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations[J]. Theoretical and Applied Genetics, 2013, 126 (11): 2699-2716.
[30] Wang Z, Gerstein M, Snyder M. RNA-Seq: A revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2009, 10(1): 57-63.
[31] Haas B J, Zody M C. Advancing RNA-seqanalysis[J]. Nature Biotechnology, 2010, 28(5): 421-423.
[32] Paterson A H, Bowers J E, Feltus F A, et al. Comparative genomics of grasses promises a bountiful harvest[J]. Plant Physiology, 2009, 149 (1): 125-131.
[33] Swigonova Z, Lai J, Ma J, et al. Close split of sorghum and maize genome progenitors[J]. Genome Research, 2004, 14(10A): 1916-1923.
[34] al-Janabi S M, Honeycutt R J, McClelland M, et al. A genetic linkage map of Saccharum spontaneum L. 'SES 208'[J]. Genetics, 1993, 134 (4): 1249-1260.
[35] Ming R, Liu S C, Lin Y R, et al. Detailed alignment of saccharum and sorghum chromosomes: Comparative organization of closely related diploid and polyploidgenomes[J]. Genetics, 1998, 150(4): 1663-1682.
[36] Wang J, Roe B, Macmil S, et al. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes[J]. BMC Genomics, 2010, 11(1): 261.
[37] 郑成木. 甘蔗核型及其染色体数目变化的研究[J]. 热带作物学报, 1993, 14(1): 47-51. Zheng Chengmu. Karyotypyes and variations of chromosome number in sugar cane[J]. Chinese Journal of Tropical Crops, 1993, 14(1): 47-51.
[38] Wang X, Tang H, Bowers J E, et al. Comparative inference of illegitimate recombination between rice and sorghum duplicated genes produced by polyploidization[J]. Genome Research, 2009, 19(6): 1026-1032.
[39] Jiang S Y, Ma Z G, Vanitha J, et al. Genetic variation and expression diversity between grain and sweet sorghum lines[J/OL]. BMC Genomics, 2013, 14: doi: 10.1186/1471-2164-14-18.
[40] Massa A N, Wanjugi H, Deal K R, et al. Gene space dynamics during the evolution of Aegilopstauschii, Brachypodiumdistachyon, Oryza sativa, and Sorghum bicolor genomes[J]. Molecular Biology and Evolution, 2011, 28(9): 2537-2547.
[41] Jin T, Chen J, Zhu L, et al. Comparative mapping combined with homology-based cloning of the rice genome reveals candidate genes for grain zinc and iron concentration in maize[J]. BMC Genetics, 2015, 16: 17: doi: 10.1186/s12863-015-0176-1.
[42] Paterson A H, Bowers J E, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses[J]. Nature, 2009, 457(7229): 551-556.
[43] Schnable P S, Ware D, Fulton R S, et al. The B73 maize genome: Complexity, diversity, and dynamics[J]. Science, 2009, 326(5956): 1112-1115.
[44] Jiang S Y, Ramachandran S. Genome-wide survey and comparative analysis of LTR retrotransposons and their captured genes in rice and sorghum[J]. PLoS One, 2013, 8(7): e71118.
[45] Sharma A, Presting G G. Evolution of centromericretrotransposons in grasses[J]. Genome Biology and Evolution, 2014, 6(6): 1335-1352.
[46] Roulin A, Piegu B, Fortune P M, et al. Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTRretrotransposon Route66 in Poaceae[J]. BMC Evolutionary Biology, 2009, 9: 58-67.
[47] Yoshida S, Maruyama S, Nozaki H, et al. Horizontal gene transfer by the parasitic plant strigahermonthica[J]. Science, 2010, 328(5982): 1128.
[48] Panahi B, Abbaszadeh B, Taghizadeghan M, et al. Genome-wide survey of alternative splicing in Sorghum bicolor[J]. Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology, 2014, 20(3): 323-329.
[49] Wang H, Devos K M, Bennetzen J L. Recurrent loss of specific introns during angiosperm evolution[J]. PLOS Genetics, 2014, 10(12): doi: 10.1371/journal.pgen.1004843.
[50] Nelson J C, Wang S, Wu Y, et al. Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum[J]. BMC Genomics, 2011, 12: 352.
[51] Zheng L Y, Guo X S, He B, et al. Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor) [J]. Genome Biology, 2011, 12(11): R114.
[52] Mace E S, Tai S, Gilding E K, et al. Whole-genome sequencing reveals untapped genetic potential in Africa's indigenous cereal crop sorghum[J]. Nature Communications, 2013: doi: 10.1038/ncomms3320.
[53] Gilding E K, Frère C H, Cruickshank A, et al. Allelic variation at a single gene increases food value in a drought-tolerant staple cereal[J]. Nature Communications, 2013: doi: 10.1038/ncomms2450.
[54] Zou G, Zhai G, Feng Q, et al. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods[J]. Journal of Experimental Botany, 2012, 63(15): 5451-5462.
[55] Bekele W A, Wieckhorst S, Friedt W, et al. High-throughput genomics in sorghum: From whole-genome resequencing to a SNP screening array[J]. Plant Biotechnology Journal, 2013, 11(9): 1112-1125.
[56] Mace E S, Jordan D R. Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement[J]. Theoretical and Applied Genetics, 2011, 123(1): 169-191.
[57] Zhang L M, Luo H, Liu Z Q, et al. Genome-wide patterns of largesize presence/absence variants in sorghum[J]. Journal of Integrative Plant Biology, 2014, 56(1): 24-37.
[58] Shen X, Liu Z Q, Mocoeur A, et al. PAV markers in Sorghum bicolour: genome pattern, affected genes and pathways, and genetic linkage map construction[J]. TAG Theoretical and Applied Genetics Theoretische and AngewandteGenetik, 2015, 128(4): 623-637.
[59] Mocoeur A, Zhang Y M, Liu Z Q, et al. Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet sorghum (Sorghum bicolour) [J]. Theoretical and Applied Genetics, 2015: doi: 10.1007/s00122-015-2538-5.
[60] Morris G P, Ramu P, Deshpande S P, et al. Population genomic and genome-wide association studies of agroclimatic traits in sorghum[J]. PNAS, 2012, 110(2): 453-458.
[61] Rhodes D H, Hoffmann L, Rooney W L, et al. Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) moench] germplasm[J]. Journal of Agricultural and Food Chemistry, 2014, 62(45): 10916-10927.
[62] Adeyanju A, Little C, Yu J, et al. Genome-wide association study on resistance to stalk rot diseases in grain sorghum[J]. G3: Genes|Genomes|Genetics, 2015: doi: 10.1534/g3.114.016394.
[63] Dugas D, Monaco M, Olson A, et al. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid[J]. BMC Genomics, 2011, 12(1): 514.
[64] Johnson S, Lim F L, Finkler A, et al. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress[J]. BMC Genomics, 2014, 15(1): 456.
[65] Mizuno H, Kawahigashi H, Kawahara Y, et al. Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum-Bipolarissorghicolainteraction[J]. BMC Plant Biology, 2012, 12(1): 121.
[66] Jiang S Y, Ma Z, Vanitha J, et al. Genetic variation and expression diversity between grain and sweet sorghum lines[J]. BMC Genomics, 2013, 14(1): 18.
[67] Calvino M, Bruggmann R, Messing J. Characterization of the small RNA component of the transcriptome from grain and sweet sorghum stems[J]. BMC Genomics, 2011, 12(1): 356.
[68] Zhang L, Zheng Y, Jagadeeswaran G, et al. Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum[J]. Genomics, 2011: doi: 10.1016/j.ygeno.2011.08.005.
[69] Katiyar A, Smita S, Chinnusamy V, et al. Identification of miRNAs in sorghum by using bioinformatics approach[J]. Plant Signaling & Behavior, 2012, 7(2): 246-259.
[70] Paterson A H, Lin Y R, Li Z K, et al. Convergent domestication of cereal crops by independent mutations at corresponding genetic-loci[J]. Science, 1995, 269(5231): 1714-1718.
[71] Paterson A H, Schertz K F, Lin Y R, et al. The weediness of wild plants—Molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) pers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(13): 6127-6131.
[72] Pereira M G, Lee M. Identification of genomic regions affecting plant height in sorghum and maize[J]. Theoretical and Applied Genetics, 1995, 90(3-4): 380-388.
[73] Anami S E, Zhang L M, Xia Y, et al. Sweet sorghum ideotypes: Genetic improvement of stress tolerance[J]. Food and Energy Security, 2015, 4 (1): 3-24.
[74] Quinby J R, Karper R E. Inheritance of height in sorghum[J]. Agronomy Journal, 1954, 46(5): 211-216.
[75] Feltus F A, Hart G E, Schertz K F, et al. Alignment of genetic maps and QTLs between inter-and intra-specific sorghum populations[J]. Theoretical and Applied Genetics, 2006, 112(7): 1295-1305.
[76] Upadhyaya H D, Wang Y H, Gowda C L L, et al. Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection[J]. Theoretical and Applied Genetics, 2014, 127(6): 1461.
[77] Multani D S, Briggs S P, Chamberlin M A, et al. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants[J]. Science, 2003, 302(5642): 81-84.
[78] Quinby J R, Karper R E. The inheritance of 3 genes that influence time of floral initiation and maturity date in milo[J]. Journal of the American Society of Agronomy, 1945, 37(11): 916-936.
[79] Quinby J R. 4th maturity gene locus in sorghum[J]. Crop Science, 1966, 6(6): 516.
[80] Murphy R L, Klein R R, Morishige D T, et al. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum[J]. PNAS, 2011, 108(39): 16469-16474.
[81] Reddy N R R, Ragimasalawada M, Sabbavarapu M M, et al. Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35[J]. BMC Genomics, 2014: doi: 10.1186/1471-2164-15-909.
[82] Haussmann B I G, Mahalakshmi V, Reddy B V S, et al. QTL mapping of stay-green in two sorghum recombinant inbred populations[J]. Theoretical and Applied Genetics, 2002, 106(1): 133-142.
[83] Tao Y Z, Hardy A, Drenth J, et al. Identifications of two different mechanisms for sorghum midge resistance through QTL mapping[J]. Theoretical and Applied Genetics, 2003, 107(1): 116-122.
[84] Punnuri S, Huang Y, Steets J, et al. Developing new markers and QTL mapping for greenbug resistance in sorghum Sorghum bicolor (L.) Moench[J]. Euphytica, 2013, 191(2): 191-203.
[85] Satish K, Madhusudhana R, Padmaja P G, et al. Development, genetic mapping of candidate gene-based markers and their significant association with the shoot fly resistance quantitative trait loci in sorghum Sorghum bicolor (L.) Moench[J]. Molecular Breeding, 2012, 30(4): 1573-1591.
[86] Shiringani A L, Friedt W. QTL for fibre-related traits in grain x sweet sorghum as a tool for the enhancement of sorghum as a biomass crop[J]. Theoretical and Applied Genetics, 2011, 123(6): 999-1011.
[87] Saballos A, Sattler S E, Sanchez E, et al. Brown midrib2 (Bmr2) encodes the major 4-coumarate: Coenzyme a ligase involved in lignin biosynthesis in sorghum (Sorghum bicolor (L.) Moench)[J]. The Plant Journal, 2012, 70(5): 818-830.
[88] Shiringani A L, Frisch M, Friedt W. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench[J]. Theoretical and Applied Genetics, 2010, 121(2): 323-336.
[89] Kumar T, Dweikat I, Sato S, et al. Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench) [J]. Plant Biotechnology Journal, 2012, 10(5): 533-544.
[90] Mkandawire N L, Kaufman R C, Bean S R, et al. Effects of Sorghum (Sorghum bicolor (L.) Moench) tannins on α-amylase activity and in vitro digestibility of starch in raw and processed flours[J]. Journal of Agricultural and Food Chemistry, 2013, 61(18): 4448-4454.
[91] Brown P J, Klein P E, Bortiri E, et al. Inheritance of inflorescence architecture in sorghum[J]. Theoretical and Applied Genetics, 2006, 113(5): 931-942.
[92] Guan Y A, Wang H l, Qin L, et al. QTL mapping of bio-energy related traits in Sorghum[J]. Euphytica, 2011, 182(3): 431-440.
[93] Felderhoff T J, Murray S C, Klein P E, et al. QTLs for energy-related traits in a sweet×grain sorghum Sorghum bicolor (L.) Moench mapping population[J]. Crop Science, 2012, 52(5): 2040-2049.
[94] Lin Z, Li X, Shannon L M, et al. Parallel domestication of the Shattering1 genes in cereals[J]. Nature Genetics, 2012, 44(6): 720-724.
[95] Wu Y, Li X, Xiang W, et al. Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1[J]. PNAS, 2012, 109(26): 10281-10286.
[96] Murphy R L, Klein R R, Morishige D T, et al. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum[J]. PNAS, 2011, 108(39): 16469-16474.
[97] Klein P E, Klein R R, Vrebalov J, et al. Sequence-based alignment of sorghum chromosome 3 and rice chromosome 1 reveals extensive conservation of gene order and one major chromosomal rearrangement[J]. Plant Journal, 2003, 34(5): 605-621.
[98] Caniato F F, Guimaraes C T, Schaffert R E, et al. Genetic diversity for aluminum tolerance in sorghum[J]. Theoretical and Applied Genetics, 2007, 114(5): 863-876.
[99] Kebrom T H, Burson B L, Finlayson S A. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals[J]. Plant Physiology, 2006, 140 (3): 1109-1117.
[100] Klein R R, Mullet J E, Jordan D R, et al. The effect of tropical sorghum conversion and inbred development on genome diversity as revealed by high-resolution genotyping[J]. Crop Science, 2008, 48: S12-S26.
[101] Lin Y R, Schertz K F, Paterson A H. Comparative-analysis of QTLs affecting plant height and maturity across the poaceae, in reference to an interspecific sorghum population[J]. Genetics, 1995, 141(1): 391-411.
[102] Brown P J, Rooney W L, Franks C, et al. Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes[J]. Genetics, 2008, 180(1): 629-637.
[103] Saballos A, Ejeta G, Sanchez E, et al. A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the brown midrib6 gene[J]. Genetics, 2009, 181(2): 783-795.
[104] Bout S, Vermerris W. A candidate-gene approach to clone the sorghum brown midrib gene encoding caffeic acid O-methyltransferase[J]. Molecular Genetics and Genomics, 2003, 269(2): 205-214.
[105] Saballos A, Sattler S E, Sanchez E, et al. Brown midrib2 (Bmr2) encodes the major 4-coumarate:coenzyme A ligase involved in lignin biosynthesis in sorghum (Sorghum bicolor (L.) Moench) [J]. Plant Journal, 2012, 70(5): 818-830.
[106] Childs K L, Miller F R, CordonnierPratt M M, et al. The sorghum photoperiod sensitivity gene, Ma(3), encodes a phytochrome B[J]. Plant Physiology, 1997, 113(2): 611-619.
[107] Hart G E, Schertz K F, Peng Y, et al. Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters[J]. Theoretical and Applied Genetics, 2001, 103(8): 1232-1242.
[108] Klein R R, Rodriguez-Herrera R, Schlueter J A, et al. Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum[J]. Theoretical and Applied Genetics, 2001, 102(2-3): 307-319.
[109] Jordan D R, Mace E S, Henzell R G, et al. Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench][J]. Theoretical and Applied Genetics, 2010, 120(7): 1279-1287.
[110] Klein R R, Klein P E, Mullet J E, et al. Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12[J]. Theoretical and Applied Genetics, 2005, 111(6): 994-1012.
[111] Srinivas G, Satish K, Madhusudhana R, et al. Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum[J]. Theoretical and Applied Genetics, 2009, 118(8): 1439-1454.
[112] de AlencarFigueiredo L F, Sine B, Chantereau J, et al. Variability of grain quality in sorghum: Association with polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2[J]. Theoretical and Applied Genetics, 2010, 121(6): 1171-1185.
[113] Knoll J, Gunaratna N, Ejeta G. QTL analysis of early-season cold tolerance in sorghum[J]. Theoretical and Applied Genetics, 2008, 116 (4): 577-587.
[114] Rami J F, Dufour P, Trouche G, et al. Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench) [J]. Theoretical and Applied Genetics, 1998, 97(4): 605-616.
[115] Xu W W, Subudhi P K, Crasta O R, et al. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench)[J]. Genome, 2000, 43(3): 461-469.
[116] Tao Y Z, Henzell R G, Jordan D R, et al. Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments[J]. Theoretical and Applied Genetics, 2000, 100(8): 1225-1232.
[117] Yundaeng C, Somta P, Tangphatsornruang S, et al. Gene discovery and functional marker development for fragrance in sorghum (Sorghum bicolor (L.) Moench)[J]. Theoretical and Applied Genetics, 2013, 126(11): 2897-2906.
[118] Laidlaw H K C, Mace E S, Williams S B, et al. Allelic variation of the beta-, gamma-and delta-kafirin genes in diverse Sorghum genotypes[J]. Theoretical and Applied Genetics, 2010, 121(7): 1227-1237.
[119] Borrell A K, Oosterom E J, Mullet J E, et al. Stay green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns[J]. New Phytologist, 2014.
[120] Magalhaes J V, Liu J, Guimaraes C T, et al. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum[J]. Nature Genetics, 2007, 39(9): 1156-1161.
[121] Koegel S, Lahmidi N A, Arnould C, et al. The family of ammonium transporters (AMT) in Sorghum bicolor: Two AMT members are induced locally, but not systemically in roots colonized by arbuscularmycorrhizalfungi[J]. New Phytologist, 2013, 198(3): 853-865.
[122] Wang S, Bai Y, Shen C, et al. Auxin-related gene families in abiotic stress response in Sorghum bicolor[J]. Functional & Integrative Genomics, 2010, 10(4): 533-546.
[123] Carneiro M, Russ C, Ross M, et al. Pacific biosciences sequencing technology for genotyping and variation discovery in human data[J]. BMC Genomics, 2012, 13(1): 375.
[124] Hastie A R, Dong L, Smith A, et al. Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilopstauschii genome[J]. PLoS One, 2013, 8(2): e55864.
[125] Dong Y, Xie M, Jiang Y, et al. Sequencing and automated wholegenome optical mapping of the genome of a domestic goat (Capra hircus)[J]. Nature Biotechnology, 2013, 31(2): 135-141.
文章导航

/