[1] Belton P S, Taylor J R N. Sorghum and millets: Protein sources for Africa[J]. Trends in Food Science & Technology, 2004, 15(2): 94-98.
[2] Mann J A, Kimber C T, Miller F R. The origin and early cultivation of sorghums in Africa[EB/OL]. [2015-07-13]. http://hdlhandle net/1969.
[3] De Wet J. Systematics and evolution of Sorghum sect. Sorghum (Gramineae)[J]. American Journal of Botany, 1978, 65(4): 477-484.
[4] Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication[J]. Cell, 2006, 127(7): 1309-1321.
[5] Zhang Limin, Liu Zhiquan, Chen Bingru, et al. Current status and application prosepects of Csweet sorghum breeding in China[J]. Journal of China Agricultural University, 2012, 17(6): 76-82.
[6] 张彩霞, 谢高地, 李士美, 等. 中国能源作物甜高粱的空间适宜分布及乙醇生产潜力[J]. 生态学报, 2010, 30(17): 4765-4770. Zhang Caixia, Xie Gaodi, Li Shimei, et al. Spatial suitability and its bio-ethanol potential of sweet sorghum in China[J]. Acta Ecologica Sinica, 2010, 30(17): 4765-4770.
[7] Woo S S, Jiang J, Gill B S, et al. Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor[J]. Nucleic Acids Research, 1994, 22(23): 4922-4931.
[8] Lin Y R, Zhu L, Ren S, et al. A Sorghum propinquum BAC library, suitable for cloning genes associated with loss-of-function mutations during crop domestication[J]. Molecular Breeding, 1999, 5(6): 511-520.
[9] Peterson D G, Schulze S R, Sciara E B, et al. Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery[J]. Genome Research, 2002, 12(5): 795-807.
[10] Peterson D G, Wessler S R, Paterson A H. Efficient capture of unique sequences from eukaryotic genomes[J]. Trends in Genetics, 2002, 18 (11): 547-550.
[11] Pratt L H, Liang C, Shah M, et al. Sorghum expressed sequence tags identify signature genes for drought, pathogenesis, and skotomorphogenesis from a milestone set of 16, 801 unique transcripts[J]. Plant Physiology, 2005, 139(2): 869-884.
[12] Hulbert S H, Richter T E, Axtell J D, et al. Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes[J]. PNAS, 1990, 87(11): 4251-4255.
[13] Whitkus R, Doebley J, Lee M. Comparative genome mapping of sorghum and maize[J]. Genetics, 1992, 132(4): 1119-1130.
[14] Tao Y Z, Jordan D R, Henzell R G, et al. Construction of a genetic map in a sorghum recombinant inbred line using probes from different sources and its comparison with other sorghum maps[J]. Australian Journal of Agricultural Research, 1998, 49(4): 729-736.
[15] Boivin K, Deu M, Rami J F, et al. Towards a saturated sorghum map using RFLP and AFLP markers[J]. Theoretical and Applied Genetics, 1999, 98(2): 320-328.
[16] Menz M A, Klein R R, Mullet J E, et al. A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP (R), RFLP and SSR markers[J]. Plant Molecular Biology, 2002, 48(5): 483-499.
[17] Bowers J E, Abbey C, Anderson S, et al. A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses[J]. Genetics, 2003, 165(1): 367-386.
[18] Mace E S, Xia L, Jordan D R, et al. DArT markers: Diversity analyses and mapping in Sorghum bicolor[J]. BMC Genomics, 2008, 9: 26.
[19] Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 2005, 437 (7057): 3376-3380.
[20] Hunkapiller T, Kaiser R, Koop B, et al. Large-scale and automated DNA sequence determination[J]. Science, 1991, 254(5028): 59-67.
[21] Fedurco M, Romieu A, Williams S, et al. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies[J]. Nucleic Acids Research, 34(3): e22.
[22] Metzker M L. Sequencing technologies—The next generation[J]. Nature Reviews Genetics, 2010, 11(1): 31-46.
[23] Mardis E R. Next-generation DNA sequencing methods[J]. Annual Review of Genomics and Human Genetics, 2008, 9(1): 387-402.
[24] Shendure J, Ji H. Next-generation DNA sequencing[J]. Nature Biotechnology, 2008, 26(10): 1135-1145.
[25] Van Tassell C P, Smith T P L, Matukumalli L K, et al. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries[J]. Nature Methods, 2008, 5(3): 247-252.
[26] Ganal M W, Altmann T, Röder M S. SNP identification in crop plants[J]. Current Opinion in Plant Biology, 2009, 12(2): 211-217.
[27] Rounsley S D, Last R L. Shotguns and SNPs: How fast and cheap sequencing is revolutionizing plant biology[J]. Plant Journal, 2010, 61 (6): 922-927.
[28] Nielsen R, Paul J S, Albrechtsen A, et al. Genotype and SNP calling from next-generation sequencing data[J]. Nature Reviews Genetics, 2011, 12(6): 443-451.
[29] Spindel J, Wright M, Chen C, et al. Bridging the genotyping gap: Using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations[J]. Theoretical and Applied Genetics, 2013, 126 (11): 2699-2716.
[30] Wang Z, Gerstein M, Snyder M. RNA-Seq: A revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2009, 10(1): 57-63.
[31] Haas B J, Zody M C. Advancing RNA-seqanalysis[J]. Nature Biotechnology, 2010, 28(5): 421-423.
[32] Paterson A H, Bowers J E, Feltus F A, et al. Comparative genomics of grasses promises a bountiful harvest[J]. Plant Physiology, 2009, 149 (1): 125-131.
[33] Swigonova Z, Lai J, Ma J, et al. Close split of sorghum and maize genome progenitors[J]. Genome Research, 2004, 14(10A): 1916-1923.
[34] al-Janabi S M, Honeycutt R J, McClelland M, et al. A genetic linkage map of Saccharum spontaneum L. 'SES 208'[J]. Genetics, 1993, 134 (4): 1249-1260.
[35] Ming R, Liu S C, Lin Y R, et al. Detailed alignment of saccharum and sorghum chromosomes: Comparative organization of closely related diploid and polyploidgenomes[J]. Genetics, 1998, 150(4): 1663-1682.
[36] Wang J, Roe B, Macmil S, et al. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes[J]. BMC Genomics, 2010, 11(1): 261.
[37] 郑成木. 甘蔗核型及其染色体数目变化的研究[J]. 热带作物学报, 1993, 14(1): 47-51. Zheng Chengmu. Karyotypyes and variations of chromosome number in sugar cane[J]. Chinese Journal of Tropical Crops, 1993, 14(1): 47-51.
[38] Wang X, Tang H, Bowers J E, et al. Comparative inference of illegitimate recombination between rice and sorghum duplicated genes produced by polyploidization[J]. Genome Research, 2009, 19(6): 1026-1032.
[39] Jiang S Y, Ma Z G, Vanitha J, et al. Genetic variation and expression diversity between grain and sweet sorghum lines[J/OL]. BMC Genomics, 2013, 14: doi: 10.1186/1471-2164-14-18.
[40] Massa A N, Wanjugi H, Deal K R, et al. Gene space dynamics during the evolution of Aegilopstauschii, Brachypodiumdistachyon, Oryza sativa, and Sorghum bicolor genomes[J]. Molecular Biology and Evolution, 2011, 28(9): 2537-2547.
[41] Jin T, Chen J, Zhu L, et al. Comparative mapping combined with homology-based cloning of the rice genome reveals candidate genes for grain zinc and iron concentration in maize[J]. BMC Genetics, 2015, 16: 17: doi: 10.1186/s12863-015-0176-1.
[42] Paterson A H, Bowers J E, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses[J]. Nature, 2009, 457(7229): 551-556.
[43] Schnable P S, Ware D, Fulton R S, et al. The B73 maize genome: Complexity, diversity, and dynamics[J]. Science, 2009, 326(5956): 1112-1115.
[44] Jiang S Y, Ramachandran S. Genome-wide survey and comparative analysis of LTR retrotransposons and their captured genes in rice and sorghum[J]. PLoS One, 2013, 8(7): e71118.
[45] Sharma A, Presting G G. Evolution of centromericretrotransposons in grasses[J]. Genome Biology and Evolution, 2014, 6(6): 1335-1352.
[46] Roulin A, Piegu B, Fortune P M, et al. Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTRretrotransposon Route66 in Poaceae[J]. BMC Evolutionary Biology, 2009, 9: 58-67.
[47] Yoshida S, Maruyama S, Nozaki H, et al. Horizontal gene transfer by the parasitic plant strigahermonthica[J]. Science, 2010, 328(5982): 1128.
[48] Panahi B, Abbaszadeh B, Taghizadeghan M, et al. Genome-wide survey of alternative splicing in Sorghum bicolor[J]. Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology, 2014, 20(3): 323-329.
[49] Wang H, Devos K M, Bennetzen J L. Recurrent loss of specific introns during angiosperm evolution[J]. PLOS Genetics, 2014, 10(12): doi: 10.1371/journal.pgen.1004843.
[50] Nelson J C, Wang S, Wu Y, et al. Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum[J]. BMC Genomics, 2011, 12: 352.
[51] Zheng L Y, Guo X S, He B, et al. Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor) [J]. Genome Biology, 2011, 12(11): R114.
[52] Mace E S, Tai S, Gilding E K, et al. Whole-genome sequencing reveals untapped genetic potential in Africa's indigenous cereal crop sorghum[J]. Nature Communications, 2013: doi: 10.1038/ncomms3320.
[53] Gilding E K, Frère C H, Cruickshank A, et al. Allelic variation at a single gene increases food value in a drought-tolerant staple cereal[J]. Nature Communications, 2013: doi: 10.1038/ncomms2450.
[54] Zou G, Zhai G, Feng Q, et al. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods[J]. Journal of Experimental Botany, 2012, 63(15): 5451-5462.
[55] Bekele W A, Wieckhorst S, Friedt W, et al. High-throughput genomics in sorghum: From whole-genome resequencing to a SNP screening array[J]. Plant Biotechnology Journal, 2013, 11(9): 1112-1125.
[56] Mace E S, Jordan D R. Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement[J]. Theoretical and Applied Genetics, 2011, 123(1): 169-191.
[57] Zhang L M, Luo H, Liu Z Q, et al. Genome-wide patterns of largesize presence/absence variants in sorghum[J]. Journal of Integrative Plant Biology, 2014, 56(1): 24-37.
[58] Shen X, Liu Z Q, Mocoeur A, et al. PAV markers in Sorghum bicolour: genome pattern, affected genes and pathways, and genetic linkage map construction[J]. TAG Theoretical and Applied Genetics Theoretische and AngewandteGenetik, 2015, 128(4): 623-637.
[59] Mocoeur A, Zhang Y M, Liu Z Q, et al. Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet sorghum (Sorghum bicolour) [J]. Theoretical and Applied Genetics, 2015: doi: 10.1007/s00122-015-2538-5.
[60] Morris G P, Ramu P, Deshpande S P, et al. Population genomic and genome-wide association studies of agroclimatic traits in sorghum[J]. PNAS, 2012, 110(2): 453-458.
[61] Rhodes D H, Hoffmann L, Rooney W L, et al. Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) moench] germplasm[J]. Journal of Agricultural and Food Chemistry, 2014, 62(45): 10916-10927.
[62] Adeyanju A, Little C, Yu J, et al. Genome-wide association study on resistance to stalk rot diseases in grain sorghum[J]. G3: Genes|Genomes|Genetics, 2015: doi: 10.1534/g3.114.016394.
[63] Dugas D, Monaco M, Olson A, et al. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid[J]. BMC Genomics, 2011, 12(1): 514.
[64] Johnson S, Lim F L, Finkler A, et al. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress[J]. BMC Genomics, 2014, 15(1): 456.
[65] Mizuno H, Kawahigashi H, Kawahara Y, et al. Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum-Bipolarissorghicolainteraction[J]. BMC Plant Biology, 2012, 12(1): 121.
[66] Jiang S Y, Ma Z, Vanitha J, et al. Genetic variation and expression diversity between grain and sweet sorghum lines[J]. BMC Genomics, 2013, 14(1): 18.
[67] Calvino M, Bruggmann R, Messing J. Characterization of the small RNA component of the transcriptome from grain and sweet sorghum stems[J]. BMC Genomics, 2011, 12(1): 356.
[68] Zhang L, Zheng Y, Jagadeeswaran G, et al. Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum[J]. Genomics, 2011: doi: 10.1016/j.ygeno.2011.08.005.
[69] Katiyar A, Smita S, Chinnusamy V, et al. Identification of miRNAs in sorghum by using bioinformatics approach[J]. Plant Signaling & Behavior, 2012, 7(2): 246-259.
[70] Paterson A H, Lin Y R, Li Z K, et al. Convergent domestication of cereal crops by independent mutations at corresponding genetic-loci[J]. Science, 1995, 269(5231): 1714-1718.
[71] Paterson A H, Schertz K F, Lin Y R, et al. The weediness of wild plants—Molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) pers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(13): 6127-6131.
[72] Pereira M G, Lee M. Identification of genomic regions affecting plant height in sorghum and maize[J]. Theoretical and Applied Genetics, 1995, 90(3-4): 380-388.
[73] Anami S E, Zhang L M, Xia Y, et al. Sweet sorghum ideotypes: Genetic improvement of stress tolerance[J]. Food and Energy Security, 2015, 4 (1): 3-24.
[74] Quinby J R, Karper R E. Inheritance of height in sorghum[J]. Agronomy Journal, 1954, 46(5): 211-216.
[75] Feltus F A, Hart G E, Schertz K F, et al. Alignment of genetic maps and QTLs between inter-and intra-specific sorghum populations[J]. Theoretical and Applied Genetics, 2006, 112(7): 1295-1305.
[76] Upadhyaya H D, Wang Y H, Gowda C L L, et al. Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection[J]. Theoretical and Applied Genetics, 2014, 127(6): 1461.
[77] Multani D S, Briggs S P, Chamberlin M A, et al. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants[J]. Science, 2003, 302(5642): 81-84.
[78] Quinby J R, Karper R E. The inheritance of 3 genes that influence time of floral initiation and maturity date in milo[J]. Journal of the American Society of Agronomy, 1945, 37(11): 916-936.
[79] Quinby J R. 4th maturity gene locus in sorghum[J]. Crop Science, 1966, 6(6): 516.
[80] Murphy R L, Klein R R, Morishige D T, et al. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum[J]. PNAS, 2011, 108(39): 16469-16474.
[81] Reddy N R R, Ragimasalawada M, Sabbavarapu M M, et al. Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35[J]. BMC Genomics, 2014: doi: 10.1186/1471-2164-15-909.
[82] Haussmann B I G, Mahalakshmi V, Reddy B V S, et al. QTL mapping of stay-green in two sorghum recombinant inbred populations[J]. Theoretical and Applied Genetics, 2002, 106(1): 133-142.
[83] Tao Y Z, Hardy A, Drenth J, et al. Identifications of two different mechanisms for sorghum midge resistance through QTL mapping[J]. Theoretical and Applied Genetics, 2003, 107(1): 116-122.
[84] Punnuri S, Huang Y, Steets J, et al. Developing new markers and QTL mapping for greenbug resistance in sorghum Sorghum bicolor (L.) Moench[J]. Euphytica, 2013, 191(2): 191-203.
[85] Satish K, Madhusudhana R, Padmaja P G, et al. Development, genetic mapping of candidate gene-based markers and their significant association with the shoot fly resistance quantitative trait loci in sorghum Sorghum bicolor (L.) Moench[J]. Molecular Breeding, 2012, 30(4): 1573-1591.
[86] Shiringani A L, Friedt W. QTL for fibre-related traits in grain x sweet sorghum as a tool for the enhancement of sorghum as a biomass crop[J]. Theoretical and Applied Genetics, 2011, 123(6): 999-1011.
[87] Saballos A, Sattler S E, Sanchez E, et al. Brown midrib2 (Bmr2) encodes the major 4-coumarate: Coenzyme a ligase involved in lignin biosynthesis in sorghum (Sorghum bicolor (L.) Moench)[J]. The Plant Journal, 2012, 70(5): 818-830.
[88] Shiringani A L, Frisch M, Friedt W. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench[J]. Theoretical and Applied Genetics, 2010, 121(2): 323-336.
[89] Kumar T, Dweikat I, Sato S, et al. Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench) [J]. Plant Biotechnology Journal, 2012, 10(5): 533-544.
[90] Mkandawire N L, Kaufman R C, Bean S R, et al. Effects of Sorghum (Sorghum bicolor (L.) Moench) tannins on α-amylase activity and in vitro digestibility of starch in raw and processed flours[J]. Journal of Agricultural and Food Chemistry, 2013, 61(18): 4448-4454.
[91] Brown P J, Klein P E, Bortiri E, et al. Inheritance of inflorescence architecture in sorghum[J]. Theoretical and Applied Genetics, 2006, 113(5): 931-942.
[92] Guan Y A, Wang H l, Qin L, et al. QTL mapping of bio-energy related traits in Sorghum[J]. Euphytica, 2011, 182(3): 431-440.
[93] Felderhoff T J, Murray S C, Klein P E, et al. QTLs for energy-related traits in a sweet×grain sorghum Sorghum bicolor (L.) Moench mapping population[J]. Crop Science, 2012, 52(5): 2040-2049.
[94] Lin Z, Li X, Shannon L M, et al. Parallel domestication of the Shattering1 genes in cereals[J]. Nature Genetics, 2012, 44(6): 720-724.
[95] Wu Y, Li X, Xiang W, et al. Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1[J]. PNAS, 2012, 109(26): 10281-10286.
[96] Murphy R L, Klein R R, Morishige D T, et al. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum[J]. PNAS, 2011, 108(39): 16469-16474.
[97] Klein P E, Klein R R, Vrebalov J, et al. Sequence-based alignment of sorghum chromosome 3 and rice chromosome 1 reveals extensive conservation of gene order and one major chromosomal rearrangement[J]. Plant Journal, 2003, 34(5): 605-621.
[98] Caniato F F, Guimaraes C T, Schaffert R E, et al. Genetic diversity for aluminum tolerance in sorghum[J]. Theoretical and Applied Genetics, 2007, 114(5): 863-876.
[99] Kebrom T H, Burson B L, Finlayson S A. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals[J]. Plant Physiology, 2006, 140 (3): 1109-1117.
[100] Klein R R, Mullet J E, Jordan D R, et al. The effect of tropical sorghum conversion and inbred development on genome diversity as revealed by high-resolution genotyping[J]. Crop Science, 2008, 48: S12-S26.
[101] Lin Y R, Schertz K F, Paterson A H. Comparative-analysis of QTLs affecting plant height and maturity across the poaceae, in reference to an interspecific sorghum population[J]. Genetics, 1995, 141(1): 391-411.
[102] Brown P J, Rooney W L, Franks C, et al. Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes[J]. Genetics, 2008, 180(1): 629-637.
[103] Saballos A, Ejeta G, Sanchez E, et al. A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the brown midrib6 gene[J]. Genetics, 2009, 181(2): 783-795.
[104] Bout S, Vermerris W. A candidate-gene approach to clone the sorghum brown midrib gene encoding caffeic acid O-methyltransferase[J]. Molecular Genetics and Genomics, 2003, 269(2): 205-214.
[105] Saballos A, Sattler S E, Sanchez E, et al. Brown midrib2 (Bmr2) encodes the major 4-coumarate:coenzyme A ligase involved in lignin biosynthesis in sorghum (Sorghum bicolor (L.) Moench) [J]. Plant Journal, 2012, 70(5): 818-830.
[106] Childs K L, Miller F R, CordonnierPratt M M, et al. The sorghum photoperiod sensitivity gene, Ma(3), encodes a phytochrome B[J]. Plant Physiology, 1997, 113(2): 611-619.
[107] Hart G E, Schertz K F, Peng Y, et al. Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters[J]. Theoretical and Applied Genetics, 2001, 103(8): 1232-1242.
[108] Klein R R, Rodriguez-Herrera R, Schlueter J A, et al. Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum[J]. Theoretical and Applied Genetics, 2001, 102(2-3): 307-319.
[109] Jordan D R, Mace E S, Henzell R G, et al. Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench][J]. Theoretical and Applied Genetics, 2010, 120(7): 1279-1287.
[110] Klein R R, Klein P E, Mullet J E, et al. Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12[J]. Theoretical and Applied Genetics, 2005, 111(6): 994-1012.
[111] Srinivas G, Satish K, Madhusudhana R, et al. Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum[J]. Theoretical and Applied Genetics, 2009, 118(8): 1439-1454.
[112] de AlencarFigueiredo L F, Sine B, Chantereau J, et al. Variability of grain quality in sorghum: Association with polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2[J]. Theoretical and Applied Genetics, 2010, 121(6): 1171-1185.
[113] Knoll J, Gunaratna N, Ejeta G. QTL analysis of early-season cold tolerance in sorghum[J]. Theoretical and Applied Genetics, 2008, 116 (4): 577-587.
[114] Rami J F, Dufour P, Trouche G, et al. Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench) [J]. Theoretical and Applied Genetics, 1998, 97(4): 605-616.
[115] Xu W W, Subudhi P K, Crasta O R, et al. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench)[J]. Genome, 2000, 43(3): 461-469.
[116] Tao Y Z, Henzell R G, Jordan D R, et al. Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments[J]. Theoretical and Applied Genetics, 2000, 100(8): 1225-1232.
[117] Yundaeng C, Somta P, Tangphatsornruang S, et al. Gene discovery and functional marker development for fragrance in sorghum (Sorghum bicolor (L.) Moench)[J]. Theoretical and Applied Genetics, 2013, 126(11): 2897-2906.
[118] Laidlaw H K C, Mace E S, Williams S B, et al. Allelic variation of the beta-, gamma-and delta-kafirin genes in diverse Sorghum genotypes[J]. Theoretical and Applied Genetics, 2010, 121(7): 1227-1237.
[119] Borrell A K, Oosterom E J, Mullet J E, et al. Stay green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns[J]. New Phytologist, 2014.
[120] Magalhaes J V, Liu J, Guimaraes C T, et al. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum[J]. Nature Genetics, 2007, 39(9): 1156-1161.
[121] Koegel S, Lahmidi N A, Arnould C, et al. The family of ammonium transporters (AMT) in Sorghum bicolor: Two AMT members are induced locally, but not systemically in roots colonized by arbuscularmycorrhizalfungi[J]. New Phytologist, 2013, 198(3): 853-865.
[122] Wang S, Bai Y, Shen C, et al. Auxin-related gene families in abiotic stress response in Sorghum bicolor[J]. Functional & Integrative Genomics, 2010, 10(4): 533-546.
[123] Carneiro M, Russ C, Ross M, et al. Pacific biosciences sequencing technology for genotyping and variation discovery in human data[J]. BMC Genomics, 2012, 13(1): 375.
[124] Hastie A R, Dong L, Smith A, et al. Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilopstauschii genome[J]. PLoS One, 2013, 8(2): e55864.
[125] Dong Y, Xie M, Jiang Y, et al. Sequencing and automated wholegenome optical mapping of the genome of a domestic goat (Capra hircus)[J]. Nature Biotechnology, 2013, 31(2): 135-141.