专题论文

水稻的起源与驯化——来自基因组学的证据

  • 景春艳 ,
  • 张富民 ,
  • 葛颂
展开
  • 中国科学院植物研究所;系统与进化植物学国家重点实验室, 北京 100093
景春艳,博士研究生,研究方向为植物进化基因组学,电子信箱:jingcy@ibcas.ac.cn

收稿日期: 2015-04-01

  修回日期: 2015-07-21

  网络出版日期: 2015-08-28

基金资助

国家重点基础研究发展计划(973计划)项目(2013CB835201);国家自然科学基金项目(91231201)

Genomic evidence of the origin and domestication of Asian cultivated rice (Oryza sativa L.)

  • JING Chunyan ,
  • ZHANG Fumin ,
  • GE Song
Expand
  • State Key Laboratory of Systematic and Evolutionary Botany; Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

Received date: 2015-04-01

  Revised date: 2015-07-21

  Online published: 2015-08-28

摘要

水稻是世界上最重要的粮食作物, 约1 万年前开始被驯化。由于水稻与其祖先野生种存在一定的遗传分化, 水稻的起源和驯化问题长期存在争议。本文综述了水稻起源和驯化方面的研究成果, 特别是近年来基因组学方面的证据, 认为水稻2 个亚种独立起源于野生祖先种内很早就分化的不同类群, 但一些驯化基因——控制重要农艺性状的基因, 可能首先在一个亚种中被驯化, 然后通过基因渐渗, 扩散到另一个亚种中。因此, 水稻驯化的关键是研究驯化基因的起源和扩散方式。随着大规模基因组测序技术的发展和相应数据分析方法的建立, 在全基因组水平对水稻及其祖先进行大规模分析, 已成为揭示水稻起源与驯化之谜的必由之路。

本文引用格式

景春艳 , 张富民 , 葛颂 . 水稻的起源与驯化——来自基因组学的证据[J]. 科技导报, 2015 , 33(16) : 27 -32 . DOI: 10.3981/j.issn.1000-7857.2015.16.003

Abstract

Rice (Oryza sativa L.) was domesticated about 10000 years ago and has been one of the most important food crops in the world. Owing to the genetic differentiations within and between rice and its wild ancestral species, the origin and domestication of rice have been controversial for a long time. Many previous investigations, especially recent genomic evidence suggested that two subspecies of rice originated independently from early differentiation populations of the wild ancestral species while quite a few domesticated genes associated with important agricultural traits might occur only in one subspecies at first and spread into the other one by introgression. Therefore, the origin and spreading mode of domesticated genes is crucial to understanding of the domestication of rice. Fortunately, the recent development of high-throughput genomic sequencing technologies and related approaches of population genomics offer us an opportunity to research population genetic differentiations within and between rice and its wild ancestral species at the genome scale, which has been the key to reveal the mystery of rice origin and domestication.

参考文献

[1] Evolution D J. Consequences and future of plant and animal domestication[J]. Nature, 2002, 418(6898): 700-707.
[2] Godfray H C J, Beddington J R, Crute I R, et al. Food security: The challenge of feeding 9 billion people[J]. Science, 2010, 327(5967): 812-818.
[3] Sang T, Ge S. The puzzle of rice domestication[J]. Journal of Integrative Plant Biology, 2007, 49(6): 760-768.
[4] Sang T, Ge S. Genetics and phylogenetics of rice domestication[J]. Current Opinion in Genetics & Development, 2007, 17(6): 533-538.
[5] Konishi S, Ebana K, Izawa T. Inference of the japonica rice domestication process from the distribution of six functional nucleotide polymorphisms of domestication-related genes in various landraces and modern cultivars[J]. Plant & Cell Physiology, 2008, 49(9): 1283-1293.
[6] Tang H, Sezen U, Paterson A H. Domestication and plant genomes[J]. Current Opinion in Plant Biology, 2010, 13(2): 160-166.
[7] Khush G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Molecular Biology, 1997, 35(1-2): 25-34.
[8] Kovach M J, Sweeney M T, McCouch S R. New insights into the history of rice domestication[J]. Trends in Genetics, 2007, 23(11): 578-587.
[9] Ge S, Sang T, Lu B R, et al. Phylogeny of rice genomes with emphasis on origins of allotetraploid species[J]. Proceedings of the National Academy of Sciences, 1999, 96(25): 14400-14405.
[10] Vaughan D A, Morishima H, Kadowaki K. Diversity in the Oryza genus[J]. Current Opinion in Plant Biology, 2003, 6(2): 139-146.
[11] Wang Y P, Bounphanousay C, Kanyavong K, et al. Population structural analysis of an in-situ conservation site for wild rice in Laos[J]. Genes & Genetic Systems, 2012, 87(5): 311-322.
[12] Grillo M A, Li C, Fowlkes A M, et al. Genetic architecture for the adaptive origin of annual wild rice, Oryza nivara[J]. Evolution, 2009, 63(4): 870-883.
[13] Vaughan D A, Lu B-R, Tomooka N. The evolving story of rice evolution[J]. Plant Science, 2008, 174(4): 394-408.
[14] Glaszmann J. Isozymes and classification of Asian rice varieties[J]. Theoretical and Applied Genetics, 1987, 74(1): 21-30.
[15] Oka H. Phylogenetic differentiation of the cultivated rice plant. I: Variation of various characters and character combinations among rice varieties[J]. Japanese Journal of Breeding, 1953, 3(2): 33-43.
[16] Zhang Q, Maroof M A S, Lu T Y, et al. Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis[J]. Theoretical and Applied Genetics, 1992, 83(4): 495-499.
[17] Sequencing Project International Rice G. The map-based sequence of the rice genome[J]. Nature, 2005, 436(7052): 793-800.
[18] Garris A J, Tai T H, Coburn J, et al. Genetic structure and diversity in Oryza sativa L.[J]. Genetics, 2005, 169(3): 1631-1638.
[19] Mizuta Y, Harushima Y, Kurata N. Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes[J]. Proceedings of the National Academy of Sciences, 2010, 107(47): 20417-20422.
[20] Ouyang Y, Liu Y G, Zhang Q. Hybrid sterility in plant: Stories from rice[J]. Current Opinion in Plant Biology, 2010, 13(2): 186-192.
[21] Yang J, Zhao X, Cheng K, et al. A killer-protector system regulates both hybrid sterility and segregation distortion in rice[J]. Science, 2012, 337(6100): 1336-1340.
[22] Zhao Z J. The Middle Yangtze region in China is one place where rice was domesticated: Phytolith evidence from the Diaotonghuan Cave, Northern Jiangxi[J]. Antiquity, 1998, 72(278): 885-297.
[23] Jiang L, Liu L. New evidence for the origins of sedentism and rice domestication in the Lower Yangzi River, China[L]. Antiquity, 2006, 80(308): 355-361.
[24] Zhao Z, Zhang J. The report of flotation work at the Jiahu site[J]. Kaogu (Archaeology), 2009, 8: 84-93.
[25] Ellis J R, Pashley C H, Burke J M, et al. High genetic diversity in a rare and endangered sunflower as compared to a common congener[J]. Molecular Ecology, 2006, 15(9): 2345-2355.
[26] Fuller D Q, Qin L, Zheng Y, et al. The domestication process and domestication rate in rice: Spikelet bases from the Lower Yangtze[J]. Science, 2009, 323(5921): 1607-1610.
[27] Gross B L, Zhao Z. Archaeological and genetic insights into the origins of domesticated rice[J]. Proceedings of the National Academy of Sciences, 2014, 111(17): 6190-6197.
[28] Fuller D Q, Allaby R G, Stevens C. Domestication as innovation: the entanglement of techniques, technology and chance in the domestication of cereal crops[J]. World Archaeology, 2010, 42(1): 13-28.
[29] Fuller D Q. Agricultural origins and frontiers in south Asia: A working synthesis[J]. Journal of World Prehistory, 2006, 20(1): 1-86.
[30] Fuller D Q. Finding plant domestication in the Indian subcontinent[J]. Current Anthropology, 2011, 52(S4): S347-S62.
[31] Lu B R, Zheng K L, Qian H R, et al. Genetic differentiation of wild relatives of rice as assessed by RFLP analysis[J]. Theoretical and Applied Genetics, 2002, 106(1): 101-106.
[32] Gao L Z, Innan H. Nonindependent domestication of the two rice subspecies, Oryza sativa ssp. indica and ssp. japonica, demonstrated by multilocus microsatellites[J]. Genetics, 2008, 179(2): 965-976.
[33] Zhu Q, Ge S. Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes[J]. New Phytologist, 2005, 167(1): 249-265.
[34] Kawakami S-I, Ebana K, Nishikawa T, et al. Genetic variation in the chloroplast genome suggests multiple domestication of cultivated Asian rice (Oryza sativa L.)[J]. Genome, 2007, 50(2): 180-187.
[35] Wang Z Y, Second G, Tanksley S D. Polymorphism and phylogenetic relationships among species in the genus Oryza as determined by analysis of nuclear RFLPs[J]. Theoretical and Applied Genetics, 1992, 83(5): 565-581.
[36] Zhao X, Yang L, Zheng Y, et al. Subspecies-specific intron length polymorphism markers reveal clear genetic differentiation in common wild rice (Oryza rufipogon L.) in relation to the domestication of cultivated rice (O. sativa L.)[J]. Journal of Genetics and Genomics, 2009, 36(7): 435-442.
[37] Xu X, Liu X, Ge S, et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes[J]. Nature Biotechnology, 2012, 30(1): 105-111.
[38] Sun Q, Wang K, Yoshimura A, et al. Genetic differentiation for nuclear, mitochondrial and chloroplast genomes in common wild rice (Oryza rufipogon Griff.) and cultivated rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2002, 104(8): 1335-1345.
[39] Ma J, Bennetzen J L. Rapid recent growth and divergence of rice nuclear genomes[J]. Proceedings of the National Academy of Sciences, 2004, 101(34): 12404-12410.
[40] Vitte C, Ishii T, Lamy F, et al. Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.)[J]. Molecular Genetics and Genomics, 2004, 272(5): 504-511.
[41] Londo J P, Chiang Y C, Hung K H, et al. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa[J]. Proceedings of the National Academy of Sciences, 2006, 103(25): 9578-9583.
[42] Wei X, Qiao W H, Chen Y T, et al. Domestication and geographic origin of Oryza sativa in China: Insights from multilocus analysis of nucleotide variation of O. sativa and O. rufipogon[J]. Molecular Ecology, 2012, 21(20): 5073-5087.
[43] Li C, Zhou A, Sang T. Rice domestication by reducing shattering[J]. Science, 2006, 311(5769): 1936-1939.
[44] Sweeney M T, Thomson M J, Cho Y G, et al. Global dissemination of a single mutation conferring white pericarp in rice[J]. PLoS Genetics, 2007, 3(8): e133.
[45] Jin J, Huang W, Gao J P, et al. Genetic control of rice plant architecture under domestication[J]. Nature Genetics, 2008, 40(11): 1365-1369.
[46] Tan L, Li X, Liu F, et al. Control of a key transition from prostrate to erect growth in rice domestication[J]. Nature Genetics, 2008, 40(11): 1360-1364.
[47] Izawa T, Konishi S, Shomura A, et al. DNA changes tell us about rice domestication[J]. Current Opinion in Plant Biology, 2009, 12(2): 185-192.
[48] Sweeney M, McCouch S. The complex history of the domestication of rice[J]. Annals of Botany, 2007, 100(5): 951-957.
[49] Yang C C, Kawahara Y, Mizuno H, et al. Independent domestication of Asian rice followed by gene flow from japonica to indica[J]. Molecular Biology and Evolution, 2012, 29(5): 1471-1479.
[50] He Z, Zhai W, Wen H, et al. Two evolutionary histories in the genome of rice: The roles of domestication genes[J]. PLoS Genetics, 2011, 7 (6): e1002100.
[51] Huang X, Lu T, Han B. Resequencing rice genomes: An emerging new era of rice genomics[J]. Trends in Genetics, 2013, 29(4): 225-232.
[52] Molina J, Sikora M, Garud N, et al. Molecular evidence for a single evolutionary origin of domesticated rice[J]. Proceedings of the National Academy of Sciences, 2011, 108(20): 8351-8356.
[53] Ge S, Sang T. Inappropriate model rejects independent domestications of indica and japonica rice[J]. Proceedings of the National Academy of Sciences, 2011, 108(39): e755.
[54] Huang P, Molina J, Flowers J M, et al. Phylogeography of Asian wild rice, Oryza rufipogon: A genome-wide view[J]. Molecular Ecology, 2012, 21(18): 4593-4604.
[55] Huang X, Kurata N, Wei X, et al. A map of rice genome variation reveals the origin of cultivated rice[J]. Nature, 2012, 490(7421): 497-501.
[56] Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica)[J]. Science, 2002, 296(5565): 79-92.
[57] McNally K L, Childs K L, Bohnert R, et al. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice[J]. Proceedings of the National Academy of Sciences, 2009, 106(30): 12273-12278.
[58] Zhao K, Wright M, Kimball J, et al. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome[J]. PLOS One, 2010, 5(5): e10780.
[59] Twyford A D, Ennos R A. Next-generation hybridization and introgression[J]. Heredity, 2012, 108(3): 179-189.
[60] Metzker M L. Sequencing technologies—The next generation[J]. Nature Reviews Genetics, 2010, 11(1): 31-46.
[61] Patterson N, Price A L, Reich D. Population structure and eigenanalysis[J]. PLoS Genetics, 2006, 2(12): e190.
[62] Falush D, Stephens M, Pritchard J K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies[J]. Genetics, 2003, 164(4): 1567-1587.
[63] Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Research, 2009, 19(9): 1655-1664.
[64] Pickrell J K, Pritchard J K. Inference of population splits and mixtures from genome-wide allele frequencydata[J]. PLoS Genetics, 2012, 8(11): e1002967.
[65] Lipson M, Loh P R, Patterson N, et al. Reconstructing Austronesian population history in Island Southeast Asia[J]. Nature Communications, 2014, 5: 4689.
[66] Patterson N J, Moorjani P, Luo Y, et al. Ancient admixture in human history[J]. Genetics, 2012, 192: 1065-1093.
[67] Sankararaman S, Mallick S, Dannemann M, et al. The genomic landscape of Neanderthal ancestry in present-day humans[J]. Nature, 2014, 507 (7492): 354-357.
[68] Plagnol V, Wall J D. Possible ancestral structure in human populations[J]. PLoS Genetics, 2006, 2(7): e105.
[69] Vernot B, Akey J M. Resurrecting surviving neandertal lineages from modern human genomes[J]. Science, 2014, 343(6174): 1017-1021.
[70] Liu K J, Dai J, Truong K, et al. An HMM-based comparative genomic framework for detecting introgression in eukaryotes[J]. PLOS Computational Biology, 2014, 10(6): e1003649.
文章导航

/