1,3,4-三磷酸肌醇5/6-激酶(ITPK)是一种在动物、植物、线虫中都比较保守的多功能酶, 在生物信号传导及生长发育中起重要作用。为了充分研究玉米中ITPK 家族基因系统分析、全生育期基因表达模式及逆境胁迫表达模式, 利用玉米基因组数据库, 通过生物信息学手段, 鉴定玉米ITPK 家族基因的全序列、定位和编码蛋白, 通过序列比对进行进化和分类分析。利用玉米高通量芯片表达数据进行组织表达差异性、干旱胁迫和病害胁迫表达谱分析。结果表明, 玉米基因组中含有6 个ITPK 家族基因, 分布于玉米的4 条染色体上。MEME 保守结构域分析显示, ZmITPK1-5 均含有3 个保守的ATP-grasp-4 结构域, ZmITPK6 含有两个ATP-grasp-4 保守结构域。进化树分析表明ZmITPK 可分为3 个亚家族。各个发育阶段中, 多数成员在生殖器官或营养器官中均有较高的表达量, 只有ZmITPK1 在所有器官中表达量都不高。ZmITPK2 和ZmITPK3 基因受干旱胁迫处理诱导不同程度上调表达。而在生物胁迫条件下均无显著上调或下调表达。
On the basis of maize genome database and bioinformatics method, we obtained maize ITPK family genes and their positions on chromosome and duplication information. ITPK proteins were classified according to their phylogenetic relationship. A total of 6 ZmITPK genes were systematically identified from maize and located on 4 chromosomes. Multiple alignment and motif display results indicated that all ZmITPK proteins share two or three conserved ATP-grasp-4 domains. Phylogenetic analysis revealed that the ZmITPK family could be divided into three groups. Microarray data showed that the ZmITPK genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results indicated that ZmITPK2 and 3 were induced by drought stress in the maize inbred lines Han21 and Ye478. While, all of ZmTIFY genes were not induced by three pathogens.
[1] Field J, Wilson M P, Mai Z, et al. An Entamoeba histolytica inositol 1, 3,4-trisphosphate 5/6-kinase has a novel 3-kinase activity[J]. Molecular and Biochemical Parasitology, 2000, 108(1): 119-123.
[2] Vebrsky J W, Wilson M P, Kisseleva M V, et al. The synthesis of inosiotl hexakisphosphate[J]. Journal of Biological Chemistry. 2002, 277 (35): 31857-31862.
[3] Wilson M P, Sun Y, Cao L, et al. Inositol 1,3,4-trisphosphate 5/6-kinase is a protein kinase that phosphorylates the transcription factors c-Jun and ATF-2[J]. Journal of Biological Chemistry, 2001, 276(44): 40998-41004.
[4] Sun Y, Wilson M P, Majerus P W. Inositol 1,3,4-trisphosphate 5/6-kinase associates with the COP9 signalosome by binding to CSN1[J]. Journal of Biological Chemistry, 2002, 277(48): 45759-45764.
[5] Mignery G A, Johnston P A, Sudhof T C. Mechanism of Ca2+ inhibition of inositol 1, 4, 5-trisphosphate (InsP3) binding to the cerebellar InsP3 receptor[J]. Journal of Biological Chemistry, 1992, 267(11): 7450-7455
[6] Richardson A, Taylor C W. Effects of Ca2+ chelators on purified inositol 1,4,5-trisphosphate (InsP3) receptors and InsP3-stimulated Ca2+ mobilization[J]. Journal of Biological Chemistry, 1993, 268(16): 11528-11533.
[7] Hill T D, Dean N M, Boynton A L. Inositol 1,3,4,5-tetrakisphosphate induces Ca2+ sequestration in rat liver cells[J]. Science, 1988, 242(4882): 1176-1178.
[8] Du H, Liu L, You L, et al. Characterization of an inositol 1,3,4-trisphosphate 5/6-kinase gene that is essential for drought and salt stress responses in rice[J]. Plant Molecular Biology, 2011, 77: 547-563.
[9] Chen Q J, Niu X G, Chai M F, et al. Isolation of an Arabidopsis gene encoding Ins(l,3,4)P3 56/-kinase-like protein and involved in plant response to abiotic stresses[J]. Acta Botanica Sinica, 2003, 45: 211-218.
[10] Larkin M A, Blackshields G, Brown N P, et al. Clustal W and clustal X version 2.0[J]. Bioinformatics, 2007, 23(21): 2947-2948.
[11] Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution, 2007, 24(8): 1596-1599.
[12] Bailey T L, Boden M, Buske F A, et al. MEME SUITE: Tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37: 202-208.
[13] Sekhon R S, Childs K L, Santoro N, et al. Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize[J]. Plant Physiology, 2012, 159(4): 1730-1744.
[14] Sekhon R S, Lin H, Childs K L, et al. Genome-wide atlas of transcription during maize development[J]. Plant Journal, 2011, 66(4): 553-563.
[15] Zheng J, Fu J, Gou M, et al. Genome-wide transcriptome analysis of two maize inbred lines under drought stress[J]. Plant Molecular Biology, 2010, 72(4-5): 407-421.
[16] Ghareeb H, Becker A, Iven T, et al. Sporisorium reilianum infection changes inflorescence and branching architectures of maize[J]. Plant Physiology, 2011, 156(4): 2037-2052.
[17] Voll L M, Horst R J, Voitsik A M, et al. Common motifs in the response of cereal primary metabolism to fungal pathogens are not based on similar transcriptional reprogramming[J]. Front Plant Science, 2011, 2: 39.
[18] Pla M, Vilardell J, Guiltinan M J, et.al. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28[J]. Plant Molecular Biology, 1993, 21(2): 259-266.
[19] Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters[J]. Trends Plant Science, 2005, 10(2): 88-94.
[20] Narusaka Y, Nakashima K, Shinwari Z K, et.al. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses[J]. Plant Journal, 2003, 34(2): 137-148.