研究论文

超高速武器对地打击效应数值仿真

  • 邓国强 ,
  • 杨秀敏
展开
  • 总参工程兵科研四所, 北京 100850
邓国强,高级工程师,研究方向为武器破坏效应与工程防护,电子信箱:hnjia@sina.com

收稿日期: 2015-03-30

  修回日期: 2015-06-18

  网络出版日期: 2015-08-28

基金资助

爆炸冲击防灾减灾国家重点实验室开放课题(DPMEIKF201304)

Numerical simulation of damage effect of hyper velocity weapon on ground target

  • DENG Guoqiang ,
  • YANG Xiumin
Expand
  • The Forth Engineer Research Institute of the Headquarters of General Staff, Beijing 100850, China

Received date: 2015-03-30

  Revised date: 2015-06-18

  Online published: 2015-08-28

摘要

以流体弹塑性模型为基础, 采用SPH 无网格方法, 对超高速武器打击花岗岩靶体进行数值仿真分析。结果表明:随着靶速度提高, 将依次呈现固体侵彻、半流体侵彻、流体侵彻3 种现象;出现流体侵彻后, 直接侵彻深度大幅减小并趋向固定值, 总弹坑深度增幅缓慢, 弹体前端形成静高压区, 并伴随以塑性冲击波为主的动应力区;亚音速流体侵彻应力波形为双波结构, 而超音速流体侵彻应力波形与空气冲击波类似为强冲击波, 但衰减指数>2.5, 且着靶速度越高, 衰减越快。

本文引用格式

邓国强 , 杨秀敏 . 超高速武器对地打击效应数值仿真[J]. 科技导报, 2015 , 33(16) : 65 -71 . DOI: 10.3981/j.issn.1000-7857.2015.16.010

Abstract

The material is described by a fluid-elasto-plastic theory model, and the impact effects of HVIW are analyzed by SPH meshless method. The numerical simulation results are as follows. With impact velocity increasing, solid penetration, semi fluid penetration and fluid penetration are successively present. In the fluid penetration step, the direct penetration depth will substantially decrease and trend to constant, and the total crater depth will increase very little. Around the projectile front face a static high pressure field will form, accompanied by a dynamic stress wave filed mainly by plastic shock wave. A double wave shape will appear in subsonic fluid penetration, but a strong shock wave, similar to air blast, will appear in hypersonic fluid penetration. However, it attenuates rapidly, with an attenuation index up to 2.5, and the higher impact velocity, the larger attenuation index.

参考文献

[1] 张丽静, 刘东升, 于存贵, 等. 高超声速飞行器[J]. 航空兵器, 2010(2): 13-16. Zhang Lijing, Liu Dongsheng, Yu Cungui, et al. Hypersonic aircraft[J]. Aero Weaponry, 2010(2): 13-16.
[2] Fair H. Hypervelocity then and now[J]. International Journal of Impact Engineering, 1987, 5(1-4): 1-11.
[3] 张庆明, 黄风雷. 超高速碰撞动力学引论[M]. 北京: 科学出版社, 2000. Zhang Qinming, Huang Fenglei. Introduction of hyper velocity impact dynamics[M]. Beijing: Science Press, 2000.
[4] 邓国强, 杨秀敏. 超高速武器对地打击效应特点分析[C]. 第一届全国超高速碰撞会议, 四川绵阳, 2013-07-25. Deng Guoqiang, Yang Xiumin. Analyisis on the effect characteristics of HVIW impact to land surface[C]. 1st National Symposium on HVI, Mianyang Sichun, July 25-26, 2013.
[5] 沈俊, 徐翔云, 何翔, 等. 弹体高速侵彻岩石效应试验研究[J]. 岩石力学与工程学报, 2010, 29(增2): 4207-4212. Shen Jun, Xu Xiangyun, He Xiang, et al. Experimental study of effect of rock targets penetrated by high-velocity projectiles[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Suppl 2): 4207-4212.
[6] 林俊德. 侵地武器及其气炮实验[J]. 中国工程科学, 2003, 5(11): 25-29. Lin Junde. Earth-penetrating weapons and their experiments upon gas gun[J]. Engineering Science, 2003, 5(11): 25-29.
[7] Antoun T, Glenn L, Walton O, et al. Simulation of hypervelocity penetration in limestone[J]. International Journal of Impact Engineering, 2005, 33(1): 45-52.
[8] 马晓青, 韩峰. 高速碰撞动力学[M]. 北京: 国防工业出版社, 1998. Ma Xiaoqing, Han Feng. High velocity impact dynamics[M]. Beijing: National Defense Press, 1998.
[9] Heuze F E. An overview of projectile penetration into geological materials, with emphasis on rocks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1990, 27(1): 1-14.
[10] Alekseevskii V P. Penetration of a rod into a target at high velocity[J]. Combustion, Explosion and Shock Waves, 1966, 2(2): 63-66.
[11] Tate A. A theory for the deceleration of long rods after impact[J]. Journal of the Mechanics and Physics of Solids, 1967, 15(6): 387-399.
[12] Lan Bin, Wen Heming. Alekseevskii-Tate revisited: An extension to the modified hydrodynamic theory of long rod penetration[J]. Science China Technological Sciences, 2010, 53(5): 1364-1373.
[13] 马晓青, 周兰庭, 隋树元. 用橡皮泥模拟高速撞击的实验研究[J]. 兵工学报, 1989(2): 50-54. Ma Xiaoqing, Zhou Lanting, Sui Shuyuan. Simulating experimental research of high speed impact with plasticine[J]. ACTA Armamentaria, 1989(2): 50-54.
[14] 孙庚辰, 谈庆明, 赵成修, 等. 金属厚靶的超高速碰撞开坑实验[J]. 兵工学报, 1994(1): 27-31. Sun Genchen, Tan Qingming, Zhao Chengxiu, et al. Cratering experiments with hyper-velocity impact upon thick metallic targets[J]. ACTA Armamentaria, 1994(1): 27-31.
[15] 杨秀敏. 爆炸冲击现象数值模拟[M]. 合肥: 中国科学技术大学出版社, 2010. Yang Xiumin. Numerical simulation for explosion and impact phenomena[M]. Hefei: University of Science and Technology of China Press, 2010.
[16] 邓国强, 杨秀敏. SPH方法在爆炸冲击效应计算中的应用[J]. 防护工程, 2004, 26(6): 46-49. Deng Guoqiang, Yang Xiumin. Application of SPH method for explosion and impact effect simulation[J]. Protective Engineering, 2004, 26(6): 46-49.
[17] 乔登江. 地下核爆炸现象学概论[M]. 北京: 国防工业出版社, 2002. Qiao Dengjiang. Introduction of underground nuclear burst phenomena[M]. Beijing: National Defense Press, 2002.
[18] 经福谦. 实验物态方程导引[M]. 北京: 科学出版社, 1999. Jin Fuqian. Introduction of experimental equation of state[M]. Beijing: Science Press, 1999.
[19] 李卧东, 王明洋, 施存程, 等. 地质类材料超高速撞击相似关系与实验研究综述[J]. 防护工程, 2015, 37(2): 55-62. Li Wodong, Wang Mingyang, Shi Cuncheng, et al. Review of similarity laws and scaling experiments research of hypervelocity impact on geological material targets[J]. Protective Engineering, 2015, 37(2): 55-62.
文章导航

/