专题论文

全球卫星大气成分遥感探测应用进展及其展望

  • 张兴赢 ,
  • 周敏强 ,
  • 王维和 ,
  • 李晓静
展开
  • 1. 中国气象局国家卫星气象中心, 北京100081;
    2. 中国科学院大气物理研究所, 中国科学院中层大气与全球环境探测重点实验室, 北京100029;
    3. 中国科学院大学, 北京100049
张兴赢,研究员,研究方向为卫星大气成分遥感及其应用,电子信箱:zxy@cma.gov.cn

收稿日期: 2015-06-18

  修回日期: 2015-07-20

  网络出版日期: 2015-09-12

基金资助

中国气象局公益性行业(气象)科研专项(GYHY201106045);欧盟FP7 框架国际合作项目(606719);国家科技支撑计划项目(2014BAC16B01);国家自然科学基金项目(40905056);高分辨率对地观测系统重大专项气象应用示范项目(E310/1112);高分辨率对地观测系统重大专项应用共性关键技术项目(Y20A-D23,Y20A-D31);国家高技术研究发展计划(863计划)项目(2011AA12A104)

Progress of global satellite remote sensing of atmospheric compositions and its' applications

  • ZHANG Xingying ,
  • ZHOU Minqiang ,
  • WANG Weihe ,
  • LI Xiaojing
Expand
  • 1. National Satellite Meteorology Center, China Meteorological Administration, Beijing 100081, China;
    2. Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, ChineseAcademy of Sciences, Beijing 100029, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-06-18

  Revised date: 2015-07-20

  Online published: 2015-09-12

摘要

随着全球变化的加剧,科学家和各国政府对大气环境日益关注,尤其是大气中的化学成分,不仅影响区域的空气质量,而且对全球气候变化产生不可估量的影响。卫星遥感探测大气中的化学成分是近年来全球对地观测领域的一个新兴分支。本文阐述全球及中国在卫星大气成分遥感探测领域的发展,以及目前已经和正在开展的各类卫星大气成分探测进展,综述大气气溶胶、主要痕量气体、主要温室气体的卫星遥感探测国际和国内现状,以及掩星和临边探测大气成分垂直廓线的进展,展望未来全球在该领域的发展方向。

本文引用格式

张兴赢 , 周敏强 , 王维和 , 李晓静 . 全球卫星大气成分遥感探测应用进展及其展望[J]. 科技导报, 2015 , 33(17) : 13 -22 . DOI: 10.3981/j.issn.1000-7857.2015.17.001

Abstract

Along with the global Climate change, the air quality has attracted a great attention from scientists and governments, especially, the atmospheric components, which not only have an impact on the local environment but also have a potential feedback on the global climate change. Recently, the satellite remote sensing, as a new-technical tool for the atmospheric science, plays an important role in monitoring the atmosphere. Here, the status, the progress and the prospective of the international and domestic atmospheric satellites are reviewed in detail, mainly focusing on the aerosols, the trace gases, and the greenhouse gases. In addition, the progress of the occultation and the limb observations of space-based remote sensing is also discussed.

参考文献

[1] Newman P A, Gleason J F, McPeters R D, et al. Nomalously low ozone over the Arctic[J]. Geophysical Research Letters, 1995, 24(22):2689-2692.
[2] Crutzen P J. The role of NO and NO2 in the chemistry of the troposphere and stratosphere[J]. Annual Review of Earth and Planetary Sciences, 1979, 7(1):443-472.
[3] Singh A, Agrawal M. Acid rain and its ecological consequences[J]. Journal of Environmental Biology, 2007, 29(1):15-24.
[4] Lacis A, Hansen J, Sato M. Climate forcing by stratospheric aerosols[J]. Geophysical Research Letters, 1992, 19(15):1607-1610.
[5] Manabe S, Wetherald R T. On the distribution of climate change resulting from an increase in CO2 content of the atmosphere[J]. Journal of the Atmospheric Sciences, 1980, 37(1):99-118.
[6] 张兴赢, 张鹏, 方宗义, 等. 基于卫星遥感技术的大尺度大气成分监 测研究进展[J]. 气象, 2007, 33(7):3-14. Zhang Xingying, Zhang Peng, Fang Zongyi, et al. Progress in trace gas remoting sensing study based on satellite monitorint[J]. Meteorological Monthly, 2007, 33(7):3-14.
[7] IPCC. Climate change 2013:The physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. New York, NY:Cambridge University Press, 2014.
[8] Rao C R N, McClain E P, Stowe C C. Remote sensing of aerosols over the oceans using AVHRR data theory, practice and applications[J]. International Journal of Remote Sensing, 1989, 10(45):743-749.
[9] Holben B, Vermote E, Kaufman Y J, et al. Aerosol retrieval over land from AVHRR data-application for atmospheric correction[J]. Geoscience and Remote Sensing, 1992, 30(2):212-222.
[10] Rudolf B H, Joseph M P, Larry L S. Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product[J]. Journal of Geophysical Research:Atmospheres, 1997, 102(D14):16889-16909.
[11] Prospero J M, Ginoux P, Torres O, et al. Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product[J]. Reviews of Geophysics, 2002, 40:21-31.
[12] McGill M J, Vaughan M A, Trepte C R, et al. Airborne validation of spatial properties measured by the CALIPSO lidar[J]. Journal of GeophysicalResearch:Atmospheres,2007:doi:10.1029/2007JD008768.
[13] Griggs M. Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data[J]. Journal of Air Pollution Control Association, 1975, 25:622-626.
[14] Mekler Y H, Quenzel G O, Marcus I. Relative atmospheric aerosol content from ERTS observations[J]. Journal of Geophysical Research:Atmospheres, 1977, 82:967-972.
[15] Koepke P, Quenzel H. Turbidity of the atmosphere determined from satellite calculation of optimum viewing geometry[J]. Journal of Geophysical Research:Atmospheres, 1979, 84(C12):7847-7855.
[16] Kaufman Y J, Tanre D, Remer L A, et al. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer[J]. Journal of Geophysical Research, 1997, 27(D14):17051-17067.
[17] Remer L A, Kaufman Y J, Tanre D, et al. The MODIS aerosol algorithm, products, and validation[J]. Journal of the Atmospheric Science, 2005, 62(4):947-973.
[18] Levy R C, Remer L A. Second-generation operational algorithm:Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance[J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D13):doi:10.1029/2006JD007811.
[19] Savtchenko A, Ouzounov D, Ahmad S, et al. Terra and Aqua MODIS products available from NASA GES DAAC[J]. Advances in Space Research, 2004, 34(4):710-714.
[20] 李晓静, 张鹏, 张兴赢, 等. 中国区域MODIS陆上气溶胶光学厚度产 品检验[J]. 应用气象学报, 2009, 20(2):147-156. Li Xiaojing, Zhang Peng, Zhang Xingying, et al. Validation of aerosol optical thickness product over China with MODIS data operated at NSMC[J]. Journal of Applied Meterological Science, 2009, 20(2):147-156.
[21] Liu J, Xia X, Li Z, et al. Validation of multi-angle imaging spectroradiometer aerosol products in China[J]. Tellus B:Chemical and Physical Meteorology, 2010, 62B:117-124.
[22] Tanré D, Bréon M F, Deuzé L J, et al. Global observation of anthropogenic aerosols from satellite[J]. Geophysical Research Letters, 2001, 28:4555-4558.
[23] Deuzé L J, Bréon M F, Devaux C, et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements
[J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D5):4913-4926.
[24] Winker D M, Hunt W H, McGill M J. Initial performance assessment of CALIOP[J]. Geophysical Research Letters, 2007, 34:doi:10.1029/2007GL030135.
[25] Sassen K. The polarization lidar technique for cloud research:A review and current assessment[J]. Bulletin of the American Meteorological Society, 1991, 72(12):1848-1866.
[26] Thomason L W, Pitts M C, Winker D M. CALIPSO observations of stratospheric aerosols:A preliminary assessment[J]. Atmospheric Chemistry and Physics, 2007, 7(20):5283-5290.
[27] Huang J, Minnis P, Yi Y, et al. Summer dust aerosols detected from CALIPSO over the Tibetan Plateau[J]. Geophysical Research Letters, 2007, 34:doi:10.1029/2007GL029938.
[28] Jackson J M, Liu H, Laszlo I, et al. Suomi-NPP VIIRS aerosol algorithms and data products[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(22):12673-12689.
[29] Liu H, Remer L A, Huang J, et al. Preliminary evaluation of S-NPP VIIRS aerosol optical thickness[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(7):3942-3962.
[30] 杨军, 董超华. 新一代风云极轨气象卫星业务产品及应用[M]. 北京:科学出版社,2010. Yang Jun, Dong Chaohua. The operational products of the new generation Fengyun Polar orbit meteorological satellite and its application[M]. Beijing:Science Press, 2010.
[31] 滕维远. 北京及其周边地区MERSI与MODIS数据气溶胶光学厚度 反演研究[D]. 北京:首都师范大学, 2013. Teng Weiyuan. The study of aerosol retrieval from MERSI and MODIS at Beijing and near-by field[D]. Beijing:Capital Normal University, 2013.
[32] Zhou Y B, Bai J, Zhou Z H, et al. Aerosol optical depth retrieval from FY-3A/MERSI for sand-dust weather over ocean[J]. Journal of Remote Sensing, 2014, 18(4):771-787.
[33] 王中挺, 陈良富, 巩慧, 等. CBERS02B卫星CCD传感器数据反演陆 地气溶胶[J]. 遥感学报, 2009(6):1047-1059. Wang Zhongting, Chen Liangfu, Gong Hui, et al. Modified DDV method of aerosol optical depth inversion over land surfaces from CBERS02B[J]. Journal of Remote Sensing, 2009(6):1047-1059.
[34] 王中挺, 厉青, 陶金花, 等. 环境一号卫星CCD相机应用于陆地气溶 胶的监测[J]. 中国环境科学, 2009(9):902-907. Wang Zhongting, Li Qing, Tao Jinhua, et al. Monitoring of aerosol optical depth over land surface using CCD camera on HJ-1 satellite[J]. China Environmental Science, 2009, 29(9):902-907.
[35] Stolarski R S, Krueger A J, Schoeberl M R, et al. Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease[J]. Nature, 1986, 322:808-811.
[36] Fishman J, Watson C E, Larsen J C, et al. Distribution of tropospheric ozone determined from satellite data[J]. Journal of Geophysical Research:Atmospheres, 1990, 95(D4):3599-3617.
[37] Kim J H, Newchurch M J. Climatology and trends of tropospheric ozone over the eastern Pacific Ocean:The influences of biomass burning and tropospheric dynamics[J]. Geophysical Research Letters, 1996, 23(25):3723-3726.
[38] Thompson A M, Witte J C, McPeters R D, et al. Southern hemisphere additional ozonesondes (SHADOZ) 1998—2000 tropical ozone climatology 1. Comparison with total ozone mapping spectrometer (TOMS) and ground-based measurements[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D2):doi:10.1029/2001JD000967.
[39] Krueger A J. Sighting of El Chichon sulfur dioxide clouds with the nimbus 7 total ozone mapping spectrometer[J]. Science, 1983, 220:1377.
[40] Krueger A J, Walter L S, Bhartia P K, et al. Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer (TOMS) instruments[J]. Journal of Geophysical Research:Atmospheres, 1995, 100(D7):14057-14076.
[41] Pyle D M, Beattie P D, Bluth G J S. Sulphur emissions to the stratosphere from explosive volcanic eruptions[J]. Bulletin of Volcanology, 1996, 57:663-671.
[42] Heath D F, Krueger A J, Roeder H A, et al. The solar backscatter ultraviolet and total ozone mapping spectrometer (SBUV/TOMS) for Nimbus G[J]. Optical Engineering, 1975, 14(4):144323.
[43] Herman J R, Hudson R, McPeters R, et al. A new self-calibration method applied to TOMS and SBUV backscattered ultraviolet data to determine long-term global ozone change[J]. Journal of GeophysicalResearch:Atmospheres, 1991, 96(D4):7531-7545.
[44] McPeters R D, Miles T, Flynn L E, et al. Comparison of SBUV and SAGE II ozone profiles:Implications for ozone trends[J]. Journal of Geophysical Research:Atmospheres, 1994, 99(D10):20513-20524.
[45] Bhartia P K, McPeters R D, Flynn L E, et al. Solar backscatter UV (SBUV) total ozone and profile algorithm[J]. Atmospheric Measurement Techniques, 2013, 6(10):2533-2548.
[46] McPeters R D, Bhartia P K, Haffner D, et al. The version 8.6 SBUV ozone data record:An overview[J]. Journal of Geophysical Research:Atmospheres, 2013, 118:8032-8039.
[47] European Space Agency. GOME global ozone measuring experiment users manual[M]. ESA SP 2-1182, Noordwijk:ESA/ESTEC, 1995.
[48] Burrows J P, Weber M, Buchwitz M, et al. The global ozone monitoring experiment (GOME):Mission concept and first scientific results[J]. Journal of the Atmospheric Sciences, 1999, 56(2):151-175.
[49] Richter A, Wittrock F, Eisinger M, et al. GOME observations of tropospheric BrO in northern hemispheric spring and summer 1997[J]. Geophysical Research Letters, 1998, 25(14):2683-2686.
[50] Chance K, Palmer P I, Spurr R J D, et al. Satellite observations of formaldehyde over North America from GOME[J]. Geophysical Research Letters, 2000, 27(21):3461-3464.
[51] Richter A, Burrows J P. Tropospheric NO2 from GOME measurements. Advances in space research[J]. 2002, 29(11):1673-1683.
[52] Martin R V. An improved retrieval of tropospheric nitrogen dioxide from GOME[J]. Journal of Geophysical Research:Atmospheres, 2002, 107(D20):doi:10.1029/2001JD001027.
[53] Bovensmann H, Burrows J P, Buchwitz M, et al. SCIAMACHY:Mission objectives and measurement modes[J]. Journal of the Atmospheric Sciences, 1999, 56(2):127-150.
[54] Blond N, Boersma K F, Eskes H J, et al. Inter-comparison of SCIAMACHY nitrogen dioxide observations, in situ measurements and air quality modeling results over Western Europe[J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D10):doi:10.1029/2006JD007277.
[55] Zhang X, Zhang P, Zhang Y, et al. The trend, seasonal cycle, and sources of tropospheric NO2 over China during 1997-2006 based on satellite measurement[J]. Science in China, Series D, 2007, 50(12):1877-1884.
[56] Rohen G. Ozone depletion during the solar proton events of October/November 2003 as seen by SCIAMACHY[J]. Journal of Geophysical Research:Space Physics, 2005, 110:doi:10.1029/2004JA010984.
[57] Buchwitz M, Beek R D, Bramstedt K, et al. Global carbon monoxide as retrieved from SCIAMACHY by WFM-DOAS[J]. Atmospheric Chemistry and Physics, 2004, 4(7):1945-1960.
[58] Frankenberg C, Aben I, Bergamaschi P, et al. Global column averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY:Trends and variability[J]. Journal of Geophysical Research:Atmospheres, 2011, 116(D4):doi:10.1029/2010JD014849.
[59] Zhang X Y, Geffen J V, Liao H, et al. Spatiotemporal variations of tropospheric SO2 over China by SCIAMACHY observations during 2004-2009[J]. Atmospheric Environment, 2012, 60:238-246.
[60] Wang X, Zhang X Y, Zhang L Y, et al. Interpreting seasonal changes of low-tropospheric CO2 over China based on SCIAMACHY observations during 2003-2011[J]. Atmospheric Environment, 2015, 103:180-187.
[61] Levelt P F, van den Oord G H J, Dobber M R, et al. The ozone monitoring instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5):1093-1101.
[62] Boersma K F, Eskes H J, Veefkind J P, et al. Near-real time retrieval of tropospheric NO2 from OMI[J]. Atmospheric Chemistry and Physics, 2007, 7(8):2103-2118.
[63] Boersma K F, Jacob D J, Bucsela E J, et al. Validation of OMI tropospheric NO2 observations during INTEX-B and application to constrain NOx emissions over the eastern United States and Mexico[J]. Atmospheric Environment, 2008, 42(19):4480-4497.
[64] Celarier E A, Brinksma E J, Gleason J F, et al. Validation of ozone monitoring instrument nitrogen dioxide columns[J]. Journal of Geophysical Research:Atmospheres, 2008, 113(D15):doi:10.1029/2007JD008908.
[65] Krotkov N A, Carn S A, Krueger A J, et al. Band residual difference algorithm for retrieval of SO2 from the Aura Ozone Monitoring Instrument (OMI) [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5):1259-1266.
[66] Ziemke J R, Chandra S, Duncan B N, et al. Tropospheric ozone determined from Aura OMI and MLS:Evaluation of measurements and comparison with the Global Modeling Initiative's Chemical Transport Model[J]. Journal of Geophysical Research:Atmospheres, 2006, 111(D19):doi:10.1029/2006JD007089.
[67] Huang K, Zhang X Y, Lin Y F. The "APEC Blue" phenomena:Regional emission control effects observed from space[J]. Atmospheric Research, 2015:164:65-75.
[68] Callies J, Corpaccioli E, Eisinger M, et al. GOME-2-Metop's secondgeneration sensor for operational ozone monitoring[J]. ESA Bulletin, 2000, 102:28-36.
[69] Loyola D G, Koukouli M E, Valks P, et al. The GOME-2 total column ozone product:Retrieval algorithm and ground-based validation[J]. Journal of Geophysical Research:Atmospheres, 2011, 116(D7):doi:10.1029/2010JD014675.
[70] Theys N, Roozendael M V, Hendrick F, et al. Global observations of tropospheric BrO columns using GOME-2 satellite data[J]. Atmospheric Chemistry and Physics, 2011, 11(4):1791-1811.
[71] Rix M, Valks P, Hao N, et al. Volcanic SO2, BrO and plume height estimations using GOME-2 satellite measurements during the eruption of Eyjafjallajökull in May 2010[J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D20):doi:10.1029/2011JD016718.
[72] Valks P, Pinardi G, Richter A, et al. Operational total and tropospheric NO2 column retrieval for GOME-2[J]. Atmospheric Measurement Techniques, 2011, 4(7):1491-1514.
[73] Kramarova N A, Nash E R, Newman P A, et al. Measuring the antarctic ozone hole with the new ozone mapping and profiler suite (OMPS)[J]. Atmospheric Chemistry and Physics, 2014, 14(5):2353-2361.
[74] Yang K, Dickerson R R, Carn S A, et al. First observations of SO2 from the satellite Suomi NPP OMPS:Widespread air pollution events over China[J]. Geophysical Research Letters, 2013, 40(18):4957-4962.
[75] Yang K, Carn S A, Ge C, et al. Advancing measurements of tropospheric NO2 from space:New algorithm and first global results from OMPS[J]. Geophysical Research Letters, 2014, 41(13):4777-4786.
[76] Wang Y M, Wang Y J, Wang W H, et al. FY-3 satellite ultraviolet total ozone unit[J]. Chinese Science Bulletin, 2010, 55(1):84-89.
[77] Wang W H, Zhang X Y, An X Q, et al. Analysis for retrieval and validation results of FY-3 total ozone unit (TOU)[J]. Chinese Science Bulletin, 2010, 66(26):3037-3043.
[78] Wang W H, Zhang X Y, Wang Y M, et al. Introduction to the FY-3A total ozone unit:Instrument, performance and results[J]. International Journal of Remote Sensing, 2011, 32(17):4749-4758.
[79] Zhang Y, Wang W H, Li X Y, et al. Anomalously low ozone of 1997 and 2011 Arctic spring:Monitoring results and analysis[J]. Advances in Polar Science, 2012, 2(23):82-86.
[80] Wang W H, Flynn L E, Zhang X Y, et al. Cross-calibration of the total ozone unit (TOU) with the ozone monitoring instrument (OMI) and SBUV/2 for environmental applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(12):4943-4955.
[81] Huang F X, Liu N Q, Zhao M X, et al. Vertical ozone profiles deduced from measurements of SBUS on FY-3 satellite[J]. Chinese Science Bulletin, 2010, 55(10):943-948.
[82] Huang F X, Huang Y, Flynn L E, et al. Radiometric calibration of the solar backscatter ultraviolet sounder and validation of ozone profile retrievals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(12):4956-4964.
[83] Liu N Q, Huang F X, Wang W H. Monitoring of the 2011 spring low ozone events in the arctic region[J]. Chinese Science Bulletin, 2011, 56(27):2893-2896.
[84] Myhre G, Highwood E J, Shine K P, et al. New estimates of radiative forcing due to well mixed greenhouse gases[J]. Geophysical Research Letters, 1998, 25(14):2715-2718.
[85] Kuze A, Suto H, Nakajima M, et al. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring[J]. Applied Optics, 2009, 48(35):6716-6733.
[86] Yokota T N, Eguchi Y Y, Ota Y, et al. Global concentrations of CO2 and CH4 retrieved from GOSAT:First preliminary results[J]. Scientific Online Letters on the Atmosphere, 2009, 5:160-163.
[87] Yoshida Y, Kikuchi N, Morino I, et al. Improvement ofthe retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data[J]. Atmospheric Measurement Techniques, 2013, 6 (6):1533-1547.
[88] Yoshida Y, Kikuchi N, Yokota T. On-orbit radiometric calibration of SWIR bands of TANSO-FTS onboard GOSAT[J]. Atmospheric Measurement Techniques, 2012, 5(10):2515-2523.
[89] Yoshida Y, Ota Y, Eguchi N, et al. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite[J]. Atmospheric Measurement Techniques, 2011, 4(4):717-734.
[90] O'Dell C W, Connor B, Bösch H, et al. The ACOS CO2 retrieval algorithm-Part 1:Description and validation against synthetic observations[J]. Atmospheric Measurement Techniques, 2012, 5(1):99-121.
[91] Crisp D, Fisher B M, O'Dell C, et al. The ACOS CO2 retrieval algorithm and ash. Part II:Global XCO2 data characterization[J]. Atmospheric Measurement Techniques, 2012, 5(4):687-707.
[92] Butz A, Guerlet S, Hasekamp O, et al. Toward accurate CO2 and CH4 observations from GOSAT[J]. Geophysical Research Letters, 2011, 38 (14):doi:10.1029/2011gl047888.
[93] Liu Y, Yang D, Cai Z. A retrieval algorithm for TanSat XCO2 observation:Retrieval experiments using GOSAT data[J]. Chinese Science Bulletin, 2013, 58(13):1520-1523.
[94] Zhou M Q, Zhang X Y, Wang P C, et al. XCO2 satellite retrieval experiments in short-wave infrared spectrum and ground-based validation[J]. Science in China, Series D, 2015, 58(7):1191-1197.
[95] Kadygrov N, Maksyutov N S, Eguchi T, et al. Role of simulated GOSAT total column CO2 observations in surface CO2 flux uncertainty reduction[J]. Journal of Geophysical Research:Atmospheres, 2009, 114 (D21):doi:10.1029/2008JD011597.
[96] Fraser A, Palmer P I, Feng L, et al. Estimating regional methane surface fluxes:The relative importance of surface and GOSAT mole fraction measurements[J]. Atmospheric Chemistry and Physics, 2013, 13(11):5697-5713.
[97] Basu S, Guerlet S, Butz A, et al. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2[J]. Atmospheric Chemistry and Physics, 2013, 13(17):8695-8717.
[98] Butz A, Hasekamp O P, Frankenberg C, et al. Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered nearinfrared sunlight:Accounting for aerosol effects[J]. Applied Optics, 2009, 48(18):3322-3336.
[99] Mao J, Kawa S R. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight[J]. Applied Optics, 2004, 43(4):914-927.
[100] Taylor T E, O'Dell C W, O'Brien D M, et al. Comparison of cloudscreening methods applied to GOSAT near-infrared spectra[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1):295-309.
[101] Frankenberg C, Butz A, Toon G C. Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2A-band spectra of reflected sun-light[J]. Geophysical Research Letters, 2011, 38(3):doi:10.1029/2010gl045896.
[102] Frankenberg C, Fisher J B, Worden J, et al. New global observations of the terrestrial carbon cycle from GOSAT:Patterns of plant fluorescence with gross primary productivity[J]. Geophysical Research Letters, 2011, 38(17):doi:10.1029/2011gl048738.
[103] Kyrölö E, Tamminen J, Leppelmeier G W, et al. GOMOS on Envisat:An overview[J]. Advances in Space Research, 2004, 33(7):1020-1028.
[104] Barath F T, Chavez M C, Cofield R E, et al. The upper atmosphere research satellite microwave limb sounder instrument[J]. Journal of Geophysical Research:Atmospheres, 1993, 98(D6):10751-10762.
[105] Llewellyn E J, Lloyd N D, Degenstein D A, et al. The OSIRIS instrument on the Odin spacecraft[J]. Canadian Journal of Physics, 2004, 82(6):411-422.
[106] Clerbaux C, George M, Turquety S, et al. CO measurements from the ACE-FTS satellite instrument:Data analysis and validation using ground-based, airborne and space-borne observations[J]. Atmospheric Chemistry and Physics, 2008, 8(9):2569-2594.
[107] Beer R. TES on the Aura mission:Scientific objectives, measurements, and analysis overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5):1102-1105.
[108] Lee S, Hong Y, Song C K, et al. Plan of Korean geostationary environment satellite over Asia-Pacific region[C]//EGU General Assembly Conference Abstracts. 2010, 12:7595.
[109] European Space Agency, ESA. GMES Sentinels 4 and 5 Mission requirements document[R]. EOP-SMA/1507, 2007:87.
[110] GEO-CAPE. Geostationary coastal and air pollution events[R]. GEOCAPE Mission NASA Workshop Report, 2008:50.
[111] Abshire J B, Riris H, Allan G R, et al. A lidar approach to measure CO2 concentrations from space for the ASCENDS Mission[J]. Remote Sensing, 2010, 7832:78320D-78320D-13.
文章导航

/