专题论文

卫星遥感监测大气臭氧总量分布和变化

  • 张艳 ,
  • 王维和 ,
  • 张兴赢
展开
  • 中国气象局中国遥感卫星辐射测量和定标重点开放实验室, 国家卫星气象中心, 北京100081
张艳,高级工程师,研究方向为卫星气候

收稿日期: 2015-06-18

  修回日期: 2015-07-12

  网络出版日期: 2015-09-12

基金资助

国家自然科学基金项目(41405146,41175024);欧盟FP7框架国际合作项目(606719);高分辨率对地观测系统重大专项气象应用示范项目(E310/1112);中国气象局公益性行业(气象)科研专项(GYHY201106045)

Distribution and variation of atmospheric total column ozone based on satellite remote sensing data

  • ZHANG Yan ,
  • WANG Weihe ,
  • ZHANG Xingying
Expand
  • Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center,China Meteorological Administration, Beijing 100081, China

Received date: 2015-06-18

  Revised date: 2015-07-12

  Online published: 2015-09-12

摘要

利用卫星紫外仪器TOMS、OMI和TOU的臭氧总量数据(1979—2014年),研究了全球及关键地区臭氧总量的分布及变化。讨论了南北半球臭氧总量分布和变化的差异,探讨了影响臭氧分布和变化的可能因子。重点分析了中国区域、青藏高原和极地的臭氧变化,并利用FY-3数据对南极臭氧洞和北极臭氧低值进行了监测。结果表明,臭氧总量的分布和变化在中高纬度地区具有很强的不均匀性,极地臭氧损耗依然明显,青藏高原的臭氧增长大于同纬度其他地区,其机制更加复杂。

本文引用格式

张艳 , 王维和 , 张兴赢 . 卫星遥感监测大气臭氧总量分布和变化[J]. 科技导报, 2015 , 33(17) : 23 -29 . DOI: 10.3981/j.issn.1000-7857.2015.17.002

Abstract

Global and regional distributions and variations of the total column ozone are studied based on the total column ozone (TCO) data during the period from 1979 to 2014 obtained with different space-borne instruments including TOMS (the total ozone mapping spectrometer) series, OMI (the ozone monitoring instrument) and TOU (the total ozone unit) series. The distributions and variations of the total column ozone over the globe and some key regions are considered. The TCO differences of distributions and variations (DAV) between the Northern and Southern Hemisphere are analyzed and the possible impact factors on the TCO DAV are identified. Special attentions are focused on the ozone variations in China, the Tibetan Plateau and the Polar regions. The monitoring of the Antarctic ozone hole and the Arctic ozone is also conducted using the FY-3 satellite data. It is shown that the TCO DAV sees a very nonuniform nature in the middle and high latitudes and in polar regions. The ozone loss over the polar regions continues to exist. In the Tibetan Plateau, the TCO variation is larger than in other regions of the same latitude. The mechanism of the ozone variation over the Tibetan Plateau is complicated.

参考文献

[1] 石广玉. 大气辐射学[M]. 北京:科学出版社, 2007:27-43. Shi Guangyu. Atmospheric radiation[M]. Beijing:Science Press, 2007:27-43.
[2] 盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京:北京大学出版 社, 2008:11-15. Sheng Peixuan, Mao Jietai, Li Jianguo, et al. Atmospheric physics[M]. Beijing:Peking University Press, 2008:11-15.
[3] Staehelin J, Harris N R P, Appenzeller C, et al. Ozone trends:A review[J]. Review of Geophysics, 2001, 39(2):231-290.
[4] Dave J V, Mateer C L. A preliminary study on the possibility of estimat-ing total atmospheric ozone from satellite measurements[J]. Journal of the Atmospheric Sciences, 1967, 24(4):414-427.
[5] McPeters R, Hollandsworth S, Flynn L, et al. Long-term ozone trends derived from the 16-year combined Nimbus7/meteor3 TOMS version7 record[J]. Geophysical Research Letters, 1996, 23(25):3699-3702.
[6] Burrows J P, Weber M, Buchwitz M, et al. The global ozone monitoring experiment (GOME):Mission concept and first scientific results[J]. Jour-nal of the Atmospheric Sciences, 1999, 56(2):151-175.
[7] Noël S, Bovensmann H, Wuttke M W, et al. Nadir, limb, and occulta-tion measurements with SCIAMACHY[J]. Advances in Space Research, 2002, 29(11):1819-1824.
[8] Lee C, Richter A, Weber M, et al. NO2 retrieval from SCIAMACHY using the weighting function DOAS (WFDOAS) technique:Comparison with standard DOAS retrieval[J]. Atmospheric Chemistry and Physics, 2008, 8(3):6137-6145.
[9] Veefkind J P, de Haan J F, Brinksma E J, et al. Levelt, total ozone from the ozone monitoring instrument (OMI) using the DOAS technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5):1239-1244.
[10] Chunhui P, Flynn L, Buss R, et al. Performance monitoring of the SNPP ozone mapping and profiler suite's sensor data records[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5):1763-1770.
[11] Wang Y M, Wang Y J, Wang W H, et al. FY-3 satellite ultraviolet to-tal ozone unit[J]. Chinese Science Bulletin, 2010, 55(1):84-89.
[12] Wang W H, Zhang X Y, An X Q, et al. Analysis for retrieval and vali-dation results of FY-3 total ozone unit (TOU)[J]. Chinese Science Bul-letin, 2010, 66(26):3037-3043.
[13] Huang F X, Liu N Q, Zhao M X, et al. Vertical ozone profiles de-duced from measurements of SBUS on FY-3 satellite[J]. Chinese Sci-ence Bulletin, 2010, 55(10):943-948.
[14] Huang F X, Yu Huang, Flynn L E, et al. Radiometric calibration of the solar backscatter ultraviolet sounder and validation of ozone pro-file retrievals[J]. IEEE Transactions on Geoscience and Remote Sens-ing, 2012, 50(12):4956-4964.
[15] Wang W H, Zhang X Y, Zhang Y, et al. Introduction to the FY-3A to-tal ozone unit:Instrument, performance and results[J]. International Journal of Remote Sensing, 2011, 32(17):4749-4758.
[16] Zhang Yan, Wang Weihe, Li Xiaojing, et al. Anomalously low ozone of 1997 and 2011 Arctic spring:Monitoring results and analysis[J]. Advances in Polar Science, 2012, 2(23):82-86.
[17] Zhang Yan, Wang Weihe, Zhang Xingying, et al. Interannual varia-tions of arctic ozone and their relationship to the polar vortex[J]. Jour-nal of Remote Sensing, 2013, 17(3):527-533.
[18] Liu Nianqing, Huang Fuxiang, Wang Weihe. Monitoring of the 2011 spring low ozone events in the Arctic region[J]. Chinese Science Bulle-tin, 2011, 56(27):2893-2896.
[19] Wang Weihe, Flynn Lawrence E, Zhang Xingying, et al. Cross-calibra-tion of the total ozone unit (TOU) with the ozone monitoring instru-ment (OMI) and SBUV2 for environmental applications[J]. IEEE Trans-actions on Geoscience and Remote Sensing, 2012, 50(12):4943-4955.
[20] Randel W J, Wu F, Stolarski R, et al. Changes in column ozone corre-lated with the stratospheric EP flux[J]. Journal of the Meteorological Society of Japan, 2002:80(4B):849-862.
[21] World Meteorological Organization. Scientific assessment of ozone de-pletion:2014[R]. Geneva:WMO, 2015.
[22] 郭世昌, 戴敏, 杨沛琼, 等. 北半球Hadley环流与臭氧气候演变规律 及其相互关系[J]. 云南大学学报:自然科学版, 2012, 34(2):169-176. Guo Shichang, Dai Min, Yang Peiqiong, et al. The evolutionary law of Northern Hemisphere misphere Hadley circulation and ozone and the correlations between them[J]. Journal of Yunnan University, 2012, 34 (2):169-176.
[23] 周秀骥, 罗超, 李维亮, 等. 中国地区臭氧总量变化与青藏高原低值 中心[J]. 科学通报, 1995, 40(15):1396-1398. Zhou Xiuji, Lou Chao, Li Weiliang, et al. Ozone changes of China and low center over Tibetan Plateau[J]. Chinese Science Bulletin, 40(15):1396-1398.
[24] Zou Han. Seasonal variation and trends of TOMS ozone over tibet[J]. Geophysical Research Letters, 1996, 23(9):1029-1032.
[25] 周顺武, 杨双艳, 张人禾, 等. 近30年青藏高原臭氧总量亏损的可能 原因及其与对流层顶高度的联[J]. 高原气象, 2012, 31(6):1471-1478. Zhou Shunwu, Yang Shuangyan, Zhang Renhe, et al. Possible causes of total ozone depletion over the Qinghai-Tibet Plateau and its relation to tropopause height in recent 30 years[J]. Plateau Meteorology, 2012, 31(6):1471-1478.
[26] 周秀骥, 李维亮, 陈隆勋, 等. 青藏高原地区大气臭氧变化的研究[J]. 气象学报, 2004, 62(5):513-527. Zhou Xiuji, Li Weiliang, Chen Longxun, et al. Study of ozone change over Tibetan Plateau[J]. Acta Meteorological Sinica, 2004, 62(5):513-527.
[27] Bian Jianchun, Yan Renchang, Chen Hongbin, et al. Formation of the summertime ozone valley over the Tibetan Plateau:The Asian summer monsoon and air column variations[J]. Advances in Atmospheric Sciences, 2011, 28(6):1318-1325.
[28] 卞建春, 严仁嫦, 陈洪滨. 亚洲夏季风是低层污染物进入平流层的重 要途径[J]. 大气科学, 2011, 35(5):897-902. Bian Jianchun, Yan Renchang, Chen Hongbin. Tropospheric pollutant transport to the stratosphere by Asian summer monsoon[J]. Chinese Journal of Atmospheric Sciences, 2011, 35(5):897-902.
文章导航

/