专题论文

卫星遥感监测全球大气气溶胶光学厚度变化

  • 李晓静 ,
  • 高玲 ,
  • 张兴赢 ,
  • 张鹏
展开
  • 中国气象局国家卫星气象中心, 北京100081
李晓静,副研究员,研究方向为卫星气溶胶参数反演算法及产品应用,电子信箱:lixiaoj@cma.gov.cn

收稿日期: 2015-06-18

  修回日期: 2015-07-12

  网络出版日期: 2015-09-12

基金资助

国家重点基础研究发展计划(973计划)项目(2011CB403401);国家科技支撑计划项目(2014BAC16B01)

Global change of aerosol optical depth based on satellite remote sensing data

  • LI Xiaojing ,
  • GAO Ling ,
  • ZHANG Xingying ,
  • ZHANG Peng
Expand
  • National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China

Received date: 2015-06-18

  Revised date: 2015-07-12

  Online published: 2015-09-12

摘要

全球大气气溶胶类型和含量变化与气候变化和大气环境污染密切相关,是气象学、环境学和医学研究关注的热点问题。为认识全球气溶胶分布基本特征,发现和跟踪全球气溶胶显著变化地区,本文利用美国NASA 发布的C6 版MODIS气溶胶光学厚度产品分析全球大气气溶胶光学厚度时空年变化特征及其影响因素;分析气溶胶光学厚度分布与中国霾区的关系,提出霾区治理的气溶胶光学厚度年平均值参考标准。分析2003—2014 年卫星监测的气溶胶光学厚度(AOD)空间分布特征显示,全球气溶胶光学厚度稳定高值区位于亚洲东部及其邻近太平洋海区、印度半岛及其邻近印度洋海区、非洲北部和中部及其邻近大西洋海区;重点变化关注区为俄罗斯西伯利亚东部增量区和南美洲亚马逊平原热带雨林减量区。气溶胶光学厚度高值地区的形成与沙尘暴、火山喷发、生物质燃烧、工业排放等自然源,以及工业污染物排放、交通运输、秸秆焚烧等人类活动造成的人为源气溶胶排放直接相关,并受气象因素和山脉等地形阻挡因素影响,这些因素的稳定性与季节变化最终形成全球气溶胶的时空分布特征。中国东部气溶胶光学厚度年平均值大于0.5 的区域为主要霾天气区,其中华北南部、黄淮、江淮、江汉地区和四川盆地为全球气溶胶光学厚度极端高值区,年平均极端高值达到0.8~1.0,为霾天气常态化发生区;通过全球气溶胶光学厚度量值分析认为,气溶胶光学厚度年平均值0.5 可作为中国大气环境最大承载量,中国东部地区高于此值的区域为主要大气污染控制区,大范围工业生产污染物减排可带来整体环境改善,通过工业结构调整有望降低的气溶胶污染中位比率为33%,平均比率为26.5%。

本文引用格式

李晓静 , 高玲 , 张兴赢 , 张鹏 . 卫星遥感监测全球大气气溶胶光学厚度变化[J]. 科技导报, 2015 , 33(17) : 30 -39 . DOI: 10.3981/j.issn.1000-7857.2015.17.003

Abstract

The aerosol type and the concentration variation are the hotspots related to the climate change, the environment and the human-health. The AQUA/MODIS aerosol optical depth (AOD) product issued by NASA is used to analyze the temporal and spatial changes of the multi-yearly and annual mean AODs in the whole world and in China for diagnosing the aerosol events that directly emitted or affected, such as the haze, the dust storm or the volcano eruption. The results show that the eastern Asia, the Indian peninsula, the northern and central Africa and their adjacent ocean areas have relatively high AODs. The significantly changing areas include the east area of Siberia due to the smoke by fire and the Amazon rainforest for bioaerosols by vegetation emissions. These high and sensitive AOD regions are closely related with the aerosol emission by natural and human activities, and they are also influenced by weather and terrain. In China, the regions in the eastern China with the yearly mean AOD higher than 0.5 are the haze weather areas. In particular, the Huanghe-Huaihe River basin, the Yangtze-Huaihe River basin and the central part of China have the highest mean AODs of 0.8-1.0, where serious haze weather often occurs. The highest AOD is caused by the highest emission from the industrial and agricultural productions, constructions, and heavy transportations. So, based on the reference the AOD (background 0.2, natural events impact 0.15, human living impact 0.15) obtained from the aerosol distinctive area, the annual mean AOD of 0.5 is defined as a threshold for delimiting the haze area and the pollution control district. In China, the environmental improvement depends on the cutting back the industrial emissions in the regions with annual mean AOD higher than 0.5, and the middle cutting ratio is 33% and the averaged cutting ratio is 26.5%.

Key words: atmospheric aerosol; AOD; haze; MODIS

参考文献

[1] 段婧, 毛节泰. 华北地区气溶胶对区域降水的影响[J]. 科学通报, 2008, 53(23):2947-2955. Duan Jing, Mao Jietai. Influence of aerosol on regional precipitation in North China[J]. Chinese Science Bulletin, 2008, 53(23):2947-2955.
[2] Lau K M, Ramanathan V, Wu G X, et al. The joint aerosol-hydrologic cycle interaction:A new challenge to monsoon climate research[J]. Bulletin of the American Meteorological Society, 2008, 89(3):369-383.
[3] Menon S, Hansen J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India[J]. Science, 2002, 297:2250-2253.
[4] 李成才, 毛节泰, 刘启汉, 等. MODIS卫星遥感气溶胶产品在北京市大 气污染研究中的应用[J]. 中国科学:D辑, 2005, 35(增1):177-186. Li Chengcai, Mao Jietai, Liu Qihan, et al. Application of aerosol products retrieved by satellite data on the air pollution in Beijing[J]. Science in China, Series D, 2007, 35(Suppl 1):177-186.
[5] 徐祥德, 丁国安, 卞林根. 北京城市大气环境污染机理与调控原理[J]. 应用气象学报, 2006, 17(6):815-828. Xu Xiangde, Ding Guoan, Bian Lingen. Beijing air pollution observation experiment[J]. Journal of Applied Meteorological Science, 2006, 17(6):815-828.
[6] 丁国安, 郑向东, 马建中, 等. 近30年大气化学和大气环境研究回顾 ——纪念中国气象科学研究院成立50周年[J]. 应用气象学报, 2006, 17(6):796-814. Ding Guoan, Zheng Xiangdong, Ma Jianzhong, et al. Review of atmospheric chemistry and environment research work in recent 30 years[J]. Journal of Applied Meteorological Science, 2006, 17(6):796-814.
[7] van Donkelaar A, Martin R V, Brauer M, et al. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth:Development and application[J]. Environmental Health Perspectives, 2010, 118(6):847-855.
[8] 邱金桓, 王普才, 夏祥鳌, 等. 近年来大气遥感研究进展[J]. 大气科 学, 2008, 32(4):841-853. Qiu Jinhuan, Wang Pucai, Xia Xiangao, et al. Recent progresses in atmospheric remote sensing researches[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4):841-853.
[9] Li B, Yuan H, Feng N, et al. Spatial and temporal variations of aerosol optical depth in China during the period from 2003 to 2006[J]. International Journal of Remote Sensing, 2010, 31(7):1801-1817.
[10] 蔡惠文, 杨军, 李晓静, 等. 近10年全球气溶胶光学厚度变化特征及 其可能原因[J]. 遥感技术与应用, 2012, 27(6):961-966. Cai Huiwen, Yang Jun, Li Xiaojing, et al. Characteristics and possible reasons of global trend in aerosol optical depth over the past decate[J]. Remote Sensing Technology and Application, 2012, 27(6):961-966.
[11] 杨军, 董超华, 卢乃锰, 等. 新一代风云极轨气象卫星业务产品及应 用[M]. 北京:科学出版社, 2010. Yang Jun, Dong Chaohua, Lu Naimeng, et al. Products and application of new serial FY polar orbit meteorological satellite[M]. Beijing:Science Press, 2010.
[12] de Leeuw G, Holzer-Popp T, Bevan S, et al. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis[J]. Remote Sensing of Environment, 2015, 162:295-315.
[13] Levy R C, Mattoo S, Munchak L A, et al. The collection 6 MODIS aerosol products over land and ocean[J]. Atmospheric Measurement Techniques, 2013, 6(1):159-259.
[14] Kaufman Y J, Tanre D, Remer L A, et al. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer[J]. Journal of Geophysical Research, 1997, 102(D14):17051-17067.
[15] Levy R C, Remer L A, Dubovik O. Global aerosol optical properties and application to moderate resolution imaging spectroradiometer aerosol retrieval over land[J]. Journal of Geophysical Research, 2007, 112(D13):doi:10.1029/2006JD007815.
[16] Levy R C, Remer L A, Mattoo S, et al. Second-generation operational algorithm:Properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance Retrieval of aerosol[J]. Journal of Geophysical Research, 2007, 112(D13):doi:10.1029/2006JD007811:1-21.
[17] 李晓静, 张鹏, 张兴赢, 等. 中国区域业务MODIS陆地气溶胶光学厚 度产品质量检验[J]. 应用气象学报, 2009, 20(2):147-156. Li Xiaojing, Zhang Peng, Zhang Xingying, et al. Validation of aerosol optical thickness product over China with MODIS data operated at NSMC[J]. Journal of Applied Meteorological Science, 2009, 20(2):147-156.
[18] 毛节泰, 李成才, 张军华, 等. MODIS卫星遥感北京地区气溶胶光学 厚度与地面光度计遥感对比[J]. 应用气象学报, 2002, 13(增1):127-135. Mao Jietai, Li Chengcai, Zhang Junhua, et al. The comparison of remote sensing aerosol optical depth from MODIS data and ground sun-photometer observations[J]. Journal of Applied Meteorological Science, 2002, 13(Suppl 1):127-135.
[19] 夏祥鳌. 全球陆地上空MODIS 气溶胶光学厚度显著偏高[J]. 科学通 报, 2006, 51(19):2297-2303. Xia Xiangao. Aerosol optical depth over land from MODIS was significantly over-estimated[J]. Chinese Science Bulletin, 2006, 51 (19):2297-2303.
[20] Li Z, Niu F, Lee K H, et al. Validation and understanding of moderate resolution imaging spectroradiometer aerosol products (C5) using ground-based measurements from the handheld sun photometer network in China[J]. Journal of Geophysical Research, 2007, 112 (D22):doi:10.1029/2007JD008479.
[21] Li B, Yuan H, Feng N, et al. Comparing MODIS and AERONET aerosol optical depth over China[J]. International Journal of Remote Sensing, 2009, 30(24):6519-6529.
[22] 张小曳, 孙俊英, 王亚强, 等. 我国雾-霾成因及其治理的思考[J]. 科 学通报,2013, 58(13):1178-1187. Zhang Xiaoye, Sun Junying, Wang Yaqiang, et al. Factors contributing to haze and fog in China[J]. Chinese Science Bulletin, 2013, 58(13):1178-1187.
[23] Ravindra K, Wauters E, Tyagi S K, et al. Assessment of air quality after the implementation of compressed natural gas (CNG) as fuel in public transport in Delhi, India[J]. Environmental Monitoring and Assessment, 2006, 115(1-3):405-417.
[24] Guttikunda S K, Goel R. Health impacts of particulate pollution in a megacity—Delhi, India[J]. Environmental Development, 2013, 6:8-20.
[25] Prospero J M, Glaccum R A, Nees R T. Atmospheric transport of soil dust from Africa to South America[J]. Nature, 1981, 289:570-572.
[26] Barbosa P M, Stroppiana D, Gregoire J M. An assessment of vegetation fire in Africa (1981-1991):Burned areas, burned biomass, and atmospheric emissions[J]. Global Biogeochemical Cycles, 1999, 13(4):933-950.
[27] Hebrew University of Jerusalem. New model provides more effective basis for biodiversity conservation[N/OL]. Science Daily, [2010-09-12]. http://www.sciencedaily.com/releases/2010/09/100912084116.htm.
[28] Hilker T, Lyapustin A I, Tucker C J, et al. Vegetation dynamics and rainfall sensitivity of the Amazon[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(45):16041-16046.
[29] Voight B, Constantine E K, Siswowidjoyo S, et al. Historical eruptions of Merapi Volcano, Central Java, Indonesia, 1768-1998[J]. Journal of Volcanology and Geothermal Research, 2000, 100(1-4):69-138.
[30] Field R D, van der Werf G R, Shen S S P. Human amplification of drought-induced biomass burning in Indonesia since 1960[J]. Nature Geoscience, 2009, 2(3):185-188.
[31] Micklin P. The aral sea disaster annual review of earth and planetary sciences[J]. Earth and Planetary Sciences, 2007, 35:47-72.
[32] Davies S M, Larsen G, Wastegård S, et al. Widespread dispersal of Icelandic tephra:How does the Eyjafjöll eruption of 2010 compare to past Icelandic events?[J]. Journal of Quaternary Science, 2010, 25(5):605-611.
[33] 张人禾, 李强, 张若楠. 2013年1月中国东部持续性强雾霾天气产生 的气象条件分析[J]. 中国科学:地球科学, 2014, 44(1):27-36. Zhang Renhe, Li Qiang, Zhang Ruonan. Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013[J]. Science China:Earth Sciences, 2014, 44(1):27-36.
[34] 穆穆, 张人禾. 应对雾霾天气:气象科学与技术大有可为[J]. 中国科 学:地球科学, 2014, 44(1):1-2. Mu Mu, Zhang Renhe. Addressing the issue of fog and haze:A promising way of meteorological science and technology[J]. Science China Earth Sciences, 2014, 44(1):1-2.
[35] Stothers R B. The great tambora eruption in 1815 and its aftermath[J]. Science, 1984, 224(4654):1191-1198.
[36] Handler P. The effect of volcanic aerosols on global climate[J]. Journal of Volcanology and Geothermal Research, 1989, 37(3-4):233-249.
[37] 王中挺, 厉青, 李莘莘, 等. 基于环境一号卫星的霾监测应用[J]. 光 谱学与光谱分析, 2012, 32(32):775-780. Wang Zhongting, Li Qing, Li Shenshen, et al. The monitoring of haze from HJ-1[J]. Spectroscopy and Spectral Analysis March, 2012, 32 (32):775-780.
[38] 吴兑. 霾与雾的识别和资料分析处理[J]. 环境化学, 2008, 27(3):327-330. Wu Dui. Discussion on the distinction between haze and fog and analysis and processing of data[J]. Environmental Chemistry, 2008, 27 (3):327-330.
[39] 马国欣, 薛永祺, 李高丰. 珠江三角洲地区的灰霾监控与卫星遥感[J]. 科技导报, 2008, 26(16):72-76. Ma Guoxin, Xue Yongqi, Li Gaofeng. Satellite remote sensing for haze monitoring in Pearl River delta region[J]. Science & Technology Review, 2008, 26(16):72-76.
[40] 吴兑, 吴晓京, 李菲,等. 1951—2005年中国大陆霾的时空变化[J]. 气象学报, 2010, 68(5):680-688. Wu Dui, Wu Xiaojing, Li Fei, et al. Temporal and special variation of haze during 1951-2005 in Chinese mainland[J]. Acta Meteorological Sinica, 2010, 68(5):680-688.
文章导航

/