专题论文

卫星遥感监测全球和中国区域污染气体NO2和NO2时空变化

  • 闫欢欢 ,
  • 张兴赢 ,
  • 王维和
展开
  • 中国气象局国家卫星气象中心, 北京100081
闫欢欢,助理研究员,研究方向为大气遥感,电子信箱:yanhh@cma.gov.cn

收稿日期: 2015-06-18

  修回日期: 2015-07-09

  网络出版日期: 2015-09-12

基金资助

国家卫星气象中心青年人才基金项目;高分辨率对地观测系统重大专项气象应用示范项目(E310/1112);中国气象局公益性行业(气象)科研专项(GYHY201106045);欧盟FP7框架国际合作项目(606719);高分辨率对地观测系统重大专项应用共性关键技术项目(Y20A-D14)

Spatiotemporal variations of NO2 and NO2 over global region and China by OMI observations during 2004-2014

  • YAN Huanhuan ,
  • ZHANG Xingying ,
  • WANG Weihe
Expand
  • National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China

Received date: 2015-06-18

  Revised date: 2015-07-09

  Online published: 2015-09-12

摘要

卫星遥感技术的发展为连续、大面积监测城市污染气体NO2和NO2提供了重要技术支持。本文基于紫外-可见光高光谱传感器OMI观测数据,分析了近10余年(2004—2014年)全球和中国区域NO2和NO2空间分布特征、长时间序列变化和季节变化特征。结果表明,中国NO2含量的高值主要集中在京津冀及周边、长江三角洲、珠江三角洲、新疆乌鲁木齐、辽宁沈阳、陕西西安等地,NO2主要集中在京津冀、长江三角洲、珠江三角洲、四川、重庆等地。较2005—2009 年,2010—2014年NO2高值范围有所扩大,河北、山东、河南、安徽、新疆乌鲁木齐等地NO2含量有所上升,而珠江三角洲、上海等地NO2含量有所下降。与NO2时空变化不同,较2005—2009年,2010—2014 年NO2高值区范围有所缩小,且河北、山东、河南、安徽、江苏、上海、重庆、贵州、珠江三角洲等地NO2含量有所降低。全球范围内,中国东部、美国东部、荷兰、德国、意大利、南非等地NO2含量较高,中国中东部、美国东部、南非、印度等地NO2含量较高。较2005—2009 年,2010—2014 年美国东部、中国珠江三角洲、中国上海、日本、西班牙、葡萄牙、意大利北部、迪拜等地NO2含量下降明显,而2010—2014 年中国东部地区和乌鲁木齐、波兰大部、伊朗德黑兰、伊拉克巴格达、科威特、沙特利雅得、印度新德里、印度巴朗格伊尔及周边、孟加拉国达卡、智利圣地亚哥等地NO2含量却有不同程度的上升。较2005—2009 年,2010—2014 年中国华北大部、重庆和贵州大部、珠江三角洲、长江三角洲,以及美国东部、南非姆普马兰加及周边等地的NO2含量有所下降,而秘鲁利马、秘鲁南部等地NO2含量出现增长。全球7 大主要城市近10 年NO2和NO2含量比较结果显示,中国石家庄NO2含量均值最高,其次为中国北京、俄罗斯莫斯科、南非姆普马兰加、美国纽约、德国科隆、中国乌鲁木齐;南非姆普马兰加、中国石家庄、中国北京的NO2总量明显高于美国纽约、德国科隆、俄罗斯莫斯科;中国北京、中国乌鲁木齐、美国纽约、德国科隆、俄罗斯莫斯科城市NO2含量高于NO2

本文引用格式

闫欢欢 , 张兴赢 , 王维和 . 卫星遥感监测全球和中国区域污染气体NO2和NO2时空变化[J]. 科技导报, 2015 , 33(17) : 41 -51 . DOI: 10.3981/j.issn.1000-7857.2015.17.004

Abstract

The satellite remote sensing technology provides an unprecedented advantage for continuous, large spatial and shortrevisit columns during 2010-2014 over Hebei, Shandong, Henan, Anhui and Urumchi are increasing due to increased vehicles and the immature flue gas denitrification technology, while the NO2 columns over Hebei, Shandong, Henan, Anhui, Jiangsu, Shanghai, Chongqing, Guizhou and Guangzhou are decreasing due to the strong control for pollution emission from large coal-fired power plants and the effective flue gas desulfurization. On a global scale, the Eastern China, the Eastern United States, Netherlands, Germany, Italy and South Africa have high NO2 levels, while the Eastern China, the Eastern United States, South Africa and India have high NO2 pollution levels. Compared with those in 2005-2009, the NO2 columns during 2010-2014 over the Eastern China, Poland, Teheran, Baghdad, Kuwait, Riyadh, New Delhi, Dacca and Santiago are increasing, while the Eastern United States, the Pearl River Delta, Shanghai, Japan, Spain, Portugal, Northern Italy and Dubai see an obvious decreasing trend. The NO2 columns during 2010-2014 over the Northern China, the Yangtze River delta, the Pearl River Delta, the Eastern United States, Mpumalanga are decreasing obviously. The trend with the NO2 columns higher that that of NO2 is found in cities of Beijing, Shijiazhuang, Urumchi, New York, Cologne and Moscow. monitoring for atmospheric NO2 and NO2. This paper presents the spatial and temporal distributions of NO2 and NO2 from OMI over Global region and China during 2004-2014. The results show that the Beijing-Tianjin-Hebei Region, the Yangtze River delta, the Pearl River Delta, Urumchi, Shenyang and Xi'an have high NO2 columns, while the Beijing-Tianjin-Hebei Region, the Yangtze River delta, the Pearl River Delta, Sichuan and Chongqing have high NO2 columns. Compared with those in 2005-2009, the NO2 columns during 2010-2014 over Hebei, Shandong, Henan, Anhui and Urumchi are increasing due to increased vehicles and the immature flue gas denitrification technology, while the NO2 columns over Hebei, Shandong, Henan, Anhui, Jiangsu, Shanghai, Chongqing, Guizhou and Guangzhou are decreasing due to the strong control for pollution emission from large coal-fired power plants and the effective flue gas desulfurization. On a global scale, the Eastern China, the Eastern United States, Netherlands, Germany, Italy and South Africa have high NO2 levels, while the Eastern China, the Eastern United States, South Africa and India have high NO2 pollution levels. Compared with those in 2005-2009, the NO2 columns during 2010-2014 over the Eastern China, Poland, Teheran, Baghdad, Kuwait, Riyadh, New Delhi, Dacca and Santiago are increasing, while the Eastern United States, the Pearl River Delta, Shanghai, Japan, Spain, Portugal, Northern Italy and Dubai see an obvious decreasing trend. The NO2 columns during 2010-2014 over the Northern China, the Yangtze River delta, the Pearl River Delta, the Eastern United States, Mpumalanga are decreasing obviously. The trend with the NO2 columns higher that that of NO2 is found in cities of Beijing, Shijiazhuang, Urumchi, New York, Cologne and Moscow.

参考文献

[1] 丁一汇, 柳艳菊. 近50年我国雾和霾的长期变化特征及其与大气湿度 的关系[J]. 中国科学:地球科学, 2014, 44(1):37-48. Ding Yihui, Liu Yanju. Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity[J]. Science China:Earth Sciences, 2014, 44(1):36–46.
[2] 王跃思, 姚利, 王莉莉, 等. 2013年元月我国中东部地区强霾污染成因 分析[J]. 中国科学:地球科学, 2014, 44(1):15-26. Wang Yuesi, Yao Li, Wang Lili, et al. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China[J]. Science China:Earth Sciences, 2014, 44(1):14-25.
[3] 王自发, 李杰, 王哲, 等. 2013年1月我国中东部强霾污染的数值模拟 和防控对策[J]. 中国科学:地球科学, 2014, 44(1):3-14. Wang Zifa, Li Jie, Wang Zhe, et al. Modeling study of regional severe hazes over mid-eastern China in January 2013 and its implications on pollution prevention and control[J]. Science China:Earth Sciences, 2014, 44(1):3-13.
[4] 张人禾, 李强, 张若楠. 2013年1月中国东部持续性强雾霾天气产生的 气象条件分析[J]. 中国科学:地球科学, 2014, 44(1):27-36. Zhang Renhe, Li Qiang, Zhang Ruonan. Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013[J]. Science China:Earth Sciences, 2014, 44(1):26-35.
[5] Fishman J, Bowman K W, Burrows J P, et al. Remote sensing of tropospheric pollution from space[J]. Bulletin of the American Meteorological Society, 2008, 89(6):805-821.
[6] Martin R V. Satellite remote sensing of surface air quality[J]. Atmospheric Environment, 2008, 42(34):7823-7843.
[7] Carn S A, Krueger A J, Krotkov N A, et al. Fire at Iraqi sulfur plant emits NO2 clouds detected by Earth Probe TOMS[J]. Geophysical Research Letters, 2004, 31(19):329-340.
[8] Krueger A J. Sighting of El Chichón sulfur dioxide clouds with the nimbus 7 total ozone mapping spectrometer[J]. Science, 1983, 220(4604):1377-1379.
[9] Burrows J P, Weber M, Buchwitz M, et al. The global ozone monitoring experiment (GOME):Mission concept and first scientific results[J]. Journal of the Atmospheric Sciences, 1999, 56(2):151-175.
[10] Eisinger M, Burrows J P. Tropospheric sulfur dioxide observed by the ERS-2 GOME instrument[J]. Geophysical Research Letters, 1998, 25 (22):4177-4180.
[11] Martin R V, Chance K, Jacob D J, et al. An improved retrieval of tropospheric nitrogen dioxide from GOME[J]. Journal of Geophysical Research, 2002, 107(D20):4437-4456.
[12] Gottwald M, Bovensmann H, Lichtenberg G, et al. SCIAMACHY, monitoring the changing Earth's atmosphere[M]. DLR:Springer, 2006.
[13] Richter A, Wittrock F, Burrows J P. NO2 measurements with SCIAMACHY[C]//Proceeding of Atmospheric Science Conference. Frascati, Italy:European Space Agency, 2006:8-12.
[14] Levelt P F, van den Oord G H J, Dobber M R, et al. The ozone monitoring instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5):1093-1101.
[15] Munro R, Eisinger M, Anderson C, et al. GOME-2 on MetOp[C]//Proceeding of the 2006 EUMETSAT Meteorological Satellite Conference. Helsinki, Finland, 2006:12-16.
[16] Richter A. Algorithm theoretical basis document for the GOME-2 rapid volcanic NO2 product[EB/OL]. 2009-09-05[2015-06-18]. http://savaa. nilu.no/PublicArchive.aspx.
[17] Valks P, Pinardi G, Richter A, et al. Operational total and tropospheric NO2 column retrieval for GOME-2[J]. Atmospheric Measurement Techniques, 2011, 4(7):1491-1514.
[18] 李莹. 地基DOAS观测反演的NO2柱总量与SCIAMACHY卫星NO2数 据的比较及NO2时空分布研究[D]. 北京:北京大学, 2006. Li Ying. Study of distribution property of NO2 from SCIAMACHY and comparison between satellite and ground based NO2 column by DOAS observation[D]. Beijing:Peking University, 2006.
[19] 齐瑾. 利用SCIAMACHY/ENVISAT资料开展中国区域NO2反演研究[D]. 北京:中国气象科学研究院, 2007. Qi Jin. Retrieval of nitrogen dioxide total column over China from SCIAMACHY/ENVISAT data[D]. Beijing:Chinese Academy of Meteorological Sciences, 2007.
[20] 张兴赢, 张鹏, 张艳, 等. 近10a中国对流层NO2的变化趋势, 时空分 布特征及其来源解析[J]. 中国科学:D辑, 2007, 37(10):1409-1416. Zhang Xingying, Zhang Peng, Zhang Yan, et al. The trend, seasonal cycle, and sources of tropospheric NO2 over China during 1997-2006 based on satellite measurement[J]. Science China:Earth Sciences, 2007, 50(12):1877-1884.
[21] 张彦军, 牛铮, 王力, 等. 基于OMI卫星数据的城市对流层NO2 变化 趋势研究[J]. 地理与地理信息科学, 2008, 24(3):96-99. Zhang Yanjun, Niu Zheng, Wang Li, et al. Study on tropospheric NO2 change trend in cities using OMI satellite data[J]. Geography and Geo-Information Science, 2008, 24(3):96-99.
[22] 岳捷. 利用卫星遥感数据对中国和美国对流层NO2分布和变化特征 进行对比研究[D]. 北京:北京大学, 2008. Yue Jie. Comparison of seasonal variations of tropospheric NO2 over China and America using satellite remote-sensing data[D]. Beijing:Peking University, 2008.
[23] Witte J C, Schoeberl M R, Douglass A R, et al. Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics[J]. Geophysical Research Letters, 2009, 36(17):37-44.
[24] 孟晓艳, 王普才, 王庚辰, 等. 北京及其周边地区冬季NO2的变化与输 送特征[J]. 气候与环境研究, 2009, 14(3):309-317. Meng Xiaoyan, Wang Pucai, Wang Gengchen, et al. Variation and transportation characteristics of NO2 in winter over Beijing and its surrounding areas[J]. Climatic and Environmental Research, 2009, 14 (3):309-317.
[25] 王跃启, 江洪, 张秀英, 等. 基于OMI卫星遥感数据的中国对流层NO2 时空分布[J]. 环境科学研究, 2009(8):932-937. Wang Yueqi, Jiang Hong, Zhang Xiuying, et al. Temporal-spatial distribution of tropospheric NO2 in China using OMI satellite remote sensing data[J]. Research of Environmental Sciences, 2009(8):932-937.
[26] Li C, Zhang Q, Krotkov N A, et al. Recent large reduction in sulfur dioxide emissions from Chinese power plants observed by the ozone monitoring instrument[J]. Geophysical Research Letters, 2010, 37(8):292-305.
[27] Zhang X Y, van Geffen J, Liao H, et al. Spatiotemporal variations of tropospheric NO2 over China by SCIAMACHY observations during 2004-2009[J]. Atmospheric Environment, 2012, 60:238-246.
[28] Jiang J, Zha Y, Gao J, et al. Monitoring of NO2 column concentration change over China from Aura OMI data[J]. International Journal of Remote Sensing, 2012, 33(6):1934-1942.
[29] Perner D, Platt U. Detection of nitrous-acid in the atmosphere by differential optical-absorption[J]. Geophysical Research Letters, 1979, 6 (12):917-920.
[30] Platt U, Perner D, Patz H W. Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical-absorption[J]. Journal of Geophysical Research-Oceans and Atmospheres, 1979, 84(C10):6329-6335.
[31] Richter A, Burrows J P. Tropospheric NO2 from GOME measurements[J]. Advances in Space Research, 2002, 29(11):1673-1683.
[32] Platt U, Stutz J. Differential optical absorption spectroscopy:Principles and applications[M]. Verlag Berlin Heidelberg:Springer, 2008.
[33] Platt U. Differential optical absorption spectroscopy (DOAS)[M]//Sigrist M W. Air Monitoring by Spectroscopic Techniques. Chemical Analysis Series. New York:John Wiley & Sons, 1994:27-84.
[34] Boersma K F, Eskes H J, Veefkind J P, et al. Near-real time retrieval of tropospheric NO2 from OMI[J]. Atmospheric Chemistry and Physics, 2007, 7(8):2103-2118.
[35] Boersma K, Jacob D J, Bucsela E, et al. Validation of OMI tropospheric NO2 observations during INTEX-B and application to constrain NOx emissions over the eastern United States and Mexico[J]. Atmospheric Environment, 2008, 42(19):4480-4497.
[36] Bucsela E, Perring A, Cohen R, et al. Comparison of tropospheric NO2 from in situ aircraft measurements with near-real-time and standard product data from OMI[J]. Journal of Geophysical Research:Atmospheres (1984-2012), 2008, 113(D16):523-531.
[37] Boersma K F, Jacob D J, Eskes H J, et al. Intercomparison of SCIAMACHY and OMI tropospheric NO2 columns:Observing the diurnal evolution of chemistry and emissions from space[J]. Journal of Geophysical Research:Atmospheres, 2008, 113(D16), doi:10.1029/2007JD008816.
[38] Boersma K, Jacob D J, Trainic M, et al. Validation of urban NO2 concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in situ surface measurements in Israeli cities[J]. Atmospheric Chemistry and Physics, 2009, 9(12):3867-3879.
[39] Heland J, Schlager H, Richter A, et al. First comparison of tropospheric NO2 column densities retrieved from GOME measurements and in situ aircraft profile measurements[J]. Geophysical Research Letters, 2002, 29 (20):44-41-44-44.
[40] 徐晋, 谢品华, 司福棋, 等. 奥运期间北京对流层NO2柱浓度地基多轴 差分吸收光谱仪观测与OMI的[J]. 大气与环境光学学报, 2009 (5):347-355. Xu Jin, Xie Pinhua, Si Fuqi, et al. Comparison of OMI and groundbased MAX-DOAS measurements of tropospheric nitrogen dioxide in Beijing during the olympic games[J]. Journal of Atmospheric and Environmental Optics, 2009(5):347-355.
[41] Fioletov V, McLinden C, Krotkov N, et al. Application of OMI, SCIAMACHY, and GOME-2 satellite NO2 retrievals for detection of large emission sources[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(19):11, 399-311, 418.
[42] Krotkov N A, McClure B, Dickerson R R, et al. Validation of NO2 retrievals from the ozone monitoring instrument over ne China[J]. Journal of Geophysical Research-Atmospheres, 2008, 113(D16):259-269.
[43] Lee C, Martin R V, van Donkelaar A, et al. NO2 emissions and lifetimes:Estimates from inverse modeling using in situ and global, space-based (SCIAMACHY and OMI) observations[J]. Journal of Geophysical Research-Atmospheres, 2011, 116(D6):161-165.
[44] McLinden C A, Fioletov V, Boersma K F, et al. Air quality over the Canadian oil sands:A first assessment using satellite observations[J]. Geophysical Research Letters, 2012, 39(4):81-83.
[45] Yan H H, Chen L F, Tao J H, et al. NO2 long-term monitoring by satellite in the Pearl River Delta[J]. Journal of Remote Sensing, 2012, 16(2):390-404.
[46] Krotkov N A, Carn S A, Krueger A J, et al. Band residual difference algorithm for retrieval of NO2 from the aura Ozone Monitoring Instrument (OMI)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5):1259-1266.
[47] Li C, Joiner J, Krotkov N A, et al. A fast and sensitive new satellite NO2 retrieval algorithm based on principal component analysis:Application to the ozone monitoring instrument[J]. Geophysical Research Letters, 2013, 40(23):6314-6318.
[48] Zhang Q, Streets D G, He K. Satellite observations of recent power plant construction in Inner Mongolia, China[J]. Geophysical Research Letters, 2009, 36(15):1-5.
[49] 吴代赦, 郑宝山, 唐修义, 等. 中国煤中氮的含量及其分布[J]. 地球与 环境, 2006, 34(1):1-6. Wu Daishe, Zheng Baoshan, Tang Xiuyi, et al. Contents and distribution of nitrogen in Chinese coals[J]. Earth and Environment, 2006, 34(1):1-6.
[50] Eatough D J, Christensen J J, Eatough N L, et al. Sulfur chemistry in a copper smelter plume[J]. Atmospheric Environment, 1982, 16(5):1001-1015.
[51] Khoder M I. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area[J]. Chemosphere, 2002, 49(6):675-684.
[52] Carn S A, Krueger A J, Krotkov N A, et al. Sulfur dioxide emissions from Peruvian copper smelters detected by the ozone monitoring instrument[J]. Geophysical Research Letters, 2007, 34(9):1093-1101.
文章导航

/