专题论文

基于MLS卫星临边探测数据研究大气OH时空分布

  • 周丽花 ,
  • 张兴赢 ,
  • 张晶
展开
  • 1. 北京师范大学全球变化与地球系统科学研究院, 北京100875;
    2. 中国气象局国家卫星气象中心, 北京100081
周丽花,硕士研究生,研究方向为卫星大气成分遥感,电子信箱:lihua.zlh@mail.bnu.edu.cn

收稿日期: 2015-06-18

  修回日期: 2015-07-11

  网络出版日期: 2015-09-12

基金资助

民用航天技术预先研究项目(E030103);中国气象局公益性行业(气象)科研专项(GYHY201106045)

Temporal and spatial distributions of atmospheric hydroxyl radicals based on the observation with the aura microwave limb sounder

  • ZHOU Lihua ,
  • ZHANG Xingying ,
  • ZHANG Jing
Expand
  • 1. College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China;
    2. National Satellite Meteorological Centre, China Meteorological Administration, Beijing 100081, China

Received date: 2015-06-18

  Revised date: 2015-07-11

  Online published: 2015-09-12

摘要

OH自由基是大气中重要的氧化剂,对大气中其他气体成分和气溶胶的形成和转化起着重要作用。本文利用MLS(micro-wave limb sounder)卫星观测资料,对大气平流层上层和中间层OH自由基的时空分布和变化以及中国上空OH自由基的垂直分布进行分析。结果显示,大气平流层上层和中间层OH自由基含量存在明显的季节变化和昼夜变化,在空间上的分布也随着太阳直射点的不同而呈现一定的周期性。比较了中国上空与同纬度纬向平均值,发现白天和夜间的观测值只有个别位置有较明显偏差,中国地区上空的OH含量比在整体上与同纬度比起来无明显异常,中国局地上空廓线的比较更加详细地反映了OH自由基的昼夜垂直结构。总之,中层大气OH自由基含量存在显著的昼夜变化、季节变化,同时也受太阳活动的影响,年际变化则不明显。

本文引用格式

周丽花 , 张兴赢 , 张晶 . 基于MLS卫星临边探测数据研究大气OH时空分布[J]. 科技导报, 2015 , 33(17) : 69 -77 . DOI: 10.3981/j.issn.1000-7857.2015.17.007

Abstract

OH radicals are important oxidants in the atmosphere, and play important roles in the formation and the conversion of other gases and aerosols in the atmosphere. This paper reviews the research progresses of OH radicals at home and abroad. The temporal and spatial distributions and the changes of the upper stratospheric and mesospheric OH radicals are analyzed based on the MLS (microwave limb sounder) satellite data,especially, the vertical distributions of OH radicals over China. It is shown that there are obvious seasonal and diurnal changes of the OH radical volume mixing ratio in the upper stratosphere and the mesosphere. Compared the OH radical volume mixing ratio over China with the zonal mean values of the same latitudes, it is found that the most of the observed volume mixture ratios of the day and the night are similar at the same latitudes, and there is no obvious difference between them. The profiles over some areas of China reflect the detailed vertical distributions of the day and the night. In a word, the diurnal and seasonal variations of the OH radical concentration in the middle atmosphere can obviously seen. The OH radical volume mixture ratio is also affected by the solar activity, and the annual variation is not significant.

参考文献

[1] Wang H T, Zhu D S, Wang W, et al. The impact of HS radicals on the measured rate constant of H2S with OH radicals[J]. Environmental Chemistry, 2010, 55(26):2951-2955.
[2] Liao C H, Kang S F, Wu F A. Hydroxyl radical scavenging role of chlo-ride and bicarbonate ions in the H2O2/UV process[J]. Chemosphere, 2001, 44(5):1193-1200.
[3] Xiang Q, Yu J, Wong P K. Quantitative characterization of hydroxyl rad-icals produced by various photocatalysts[J]. Journal of Colloid and Inter-face Science, 2011, 357(1):163-167.
[4] Zhao D F, Kaminski M, Schlag P, et al. Secondary organic aerosol for-mation from hydroxyl radical oxidation and ozonolysis of monoterpenes[J]. Atmospheric Chemistry and Physics, 2015, 15(2):991-1012.
[5] 林云萍, 赵春生. 对流层大气氧化性研究进展[J]. 地球科学进展, 2009, 24(5):488-496. Lin Yunping, Zhao Chunsheng. The oxidation in the troposphere:A review[J]. Advances in Earth Science, 2009, 24(5):488-496.
[6] Stuhl B K, Hummon M T, Yeo M, et al. Evaporative cooling of the dipo-lar hydroxyl radical[J]. Nature, 2012, 492(7429):396-400.
[7] Wang C, Chen Z. Effect of CH3OOH on the atmospheric concentration of OH radicals[J]. Progress in Nature Science, 2006, 16(11):1141-1149.
[8] Amedro D, Parker A E, Schoemaecker C, et al. Direct observation of OH radicals after 565nm multi-photon excitation of NO2 in the pres-ence of H2O[J]. Chemical Physics Letters, 2011, 513(1-3):12-16.
[9] Prinn R G, Huang J, Weiss R F, et al. Evidence for substantial varia-tions of atmospheric hydroxyl radicals in the past two decades[J]. Sci-ence, 2001, 292(5523):1882-1888.
[10] Rohrer F, Berresheim H. Strong correlation between levels of tropo-spheric hydroxyl radicals and solar ultraviolet radiation[J]. Nature, 2006, 442(7099):184-187.
[11] Slade J H, Thalman R, Wang J, et al. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH:Implications for cloud condensation nucleus activity[J]. Atmospheric Chemistry and Physics Discussions, 2015, 15(5):6771-6819.
[12] Murray L T, Logan J A, Jacob D J. Interannual variability in tropical tropospheric ozone and OH:The role of lightning[J]. Journal of Geo-physical Research:Atmospheres, 2013, 118(19):11468-11480.
[13] Reimann S, Manning A J, Simmonds P G, et al. Low European methyl chloroform emissions inferred from long-term atmospheric measure-ments[J]. Nature, 2005, 433(7025):506-508.
[14] Lee J, Lane D A. Formation of oxidized products from the reaction of gaseous phenanthrene with the OH radical in a reaction chamber[J]. Atmospheric Environment, 2010, 44(20):2469-2477.
[15] Su H, Cheng Y F, Oswald R, et al. Soil nitrite as a source of atmo-spheric HONO and OH radicals[J]. Science, 2011, 333(6049):1616-1618.
[16] Andersson M E, Verronen P T, Wang S, et al. Precipitating radiation belt electrons and enhancements of mesospheric hydroxyl during 2004-2009[J]. Journal of Geophysical Research, 2012, 117(D9):9304-9306.
[17] William S. Heaps T J M. Balloon borne LIDAR measurements of stratospheric hydroxyl radical[J]. Journal of Geophysical Research:Oceans (1978-2012), 1983, 88(C9):5281-5289.
[18] Cheung R, Li K F, Wang S, et al. Atmospheric hydroxyl radical (OH) abundances from ground-based ultraviolet solar spectra:An improved retrieval method[J]. Applied Optics, 2008, 47(33):6277-6284.
[19] Osterman G B, Salawitch R J, Sen B, et al. Balloon-borne measure-ments of stratospheric radicals and their precursors:Implications for the production and loss of ozone[J]. Geophysical Research Letters, 1997, 24(9):1107-1110.
[20] Cageao R P, Blavier J F, McGuire J P, et al. High-resolution Fouriertransform ultraviolet-visible spectrometer for the measurement of at-mospheric trace species:Application to OH[J]. Optical Society of America, 2001, 40(12):2024-2030.
[21] Conway R R, Summers M E, Stevens M H. Satellite observations of up-per stratospheric and mesospheric OH:The HOx dilemma[J]. Geophys-ical Research Letters, 2000, 27(17):2613-2616.
[22] Ricaud P, De La Noë J, Connor B J, et al. Diurnal variability of meso-spheric ozone as measured by the UARS microwave limb sounder in-strument:Theoretical and ground-based validations[J]. Journal of Geo-physical Research 1996, 101(D6):10077-10089.
[23] Millán L, Wang S, Livesey N, et al. Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder[J]. Atmo-spheric Chemistry and Physics, 2015, 15(5):2889-2902.
[24] Stevens M H, Englert C R, Hervig M, et al. The diurnal variation of polar mesospheric cloud frequency near 55°N observed by SHIMMER[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71(3-4):401-407.
[25] Bey I, Jacob D J, Yantosca R M, et al. Global modeling of tropospher-ic chemistry with assimilated meteorology:Model description and eval-uation[J]. Journal of Geophysical Research, 2001, 106(D19):23073-23095.
[26] Siskind D E, Stevens M H, Englert C R, et al. Comparison of a photo-chemical model with observations of mesospheric hydroxyl and ozone[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(1):195-207.
[27] 任信荣, 王会祥, 邵可声, 等. 北京市大气OH自由基测量结果及其 特征[J]. 环境科学, 2002, 23(4):24-27. Ren Xinrong, Wang Huixiang, Shao Kesheng, et al. Determination and characteristics of OH radical in urban atmosphere in Beijing[J]. Environmental Science, 2002, 23(4):24-27.
[28] 任信荣, 邵可声, 缪国芳, 等. 大气OH自由基浓度的测定[J]. 中国环 境科学, 2001, 21(2):20-23. Ren Xinrong, Shao Kesheng, Miao Guofang, et al. Determination of hy-droxyl radical concentration in atmosphere[J]. China Environmental Science, 2001, 21(2):20-23.
[29] 刘宇, 刘文清, 阚瑞峰, 等. 超高分辨差分吸收光谱技术测量火焰中 OH自由基[J]. 光谱学与光谱分析, 2011, 31(10):2659-2663. Liu Yu, Liu Wenqing, Kan Ruifeng, et al. Measurement of OH radi⁃cals in flame with high resolution differential optical absorption spec-troscopy[J]. Spectroscopy and Spectral Analysis, 2011, 31(10):2659-2663.
[30] Dusanter S, Vimal D, Stevens P S. Technical note:Measuring tropo-spheric OH and HO2 by laser-induced fluorescence at low pressure. A comparison of calibration techniques[J]. Atmospheric Chemistry and Physics, 2008, 8(2):321-340.
[31] 张兴赢, 张鹏, 方宗义, 等. 应用卫星遥感技术监测大气痕量气体的 研究进展[J]. 气象, 2007(7):3-14. Zhang Xingying, Zhang Peng, Fang Zongyi, et al. The progress in trace gas remote sensing study based on the satellite monitoring[J]. Me-teorological Monthly, 2007(7):3-14.
[32] Mahajan A S, Whalley L K, Kozlova E, et al. DOAS observations of formaldehyde and its impact on the HOx balance in the tropical Atlan-tic marine boundary layer[J]. Journal of Atmospheric Chemistry, 2010, 66(3):167-178.
[33] Greg K, George L, Gary R. The total irradiance monitor (TIM):Sci-ence results[J]. Solar Physics, 2005, 2005(230):129-139.
[34] Jackman C H, Randall C E, Harvey V L, et al. Middle atmospheric changes caused by the January and March 2012 solar proton events[J]. Atmospheric Chemistry and Physics, 2014, 14(2):1025-1038.
[35] Damiani A, Storini M, Rafanelli C, et al. The hydroxyl radical as an in-dicator of SEP fluxes in the high-latitude terrestrial atmosphere[J]. Ad-vances in Space Research, 2010, 46(9):1225-1235.
[36] 寿绍文, 唐东昇, 朱乾根, 等. 天气学原理和方法[M]. 北京:气象出版 社, 2010:152-153. Shou Shaowen, Tang Dongsheng, Zhu Qiangen, et al. The principles and methods of weather science[M]. Beijing:China Meteorological Press, 2010:152-153.
[37] 杨军. 气象卫星及其应用(上)[M]. 北京:气象出版社, 2012:21-22. Yang Jun. Meteorological satellites and their applications (I) [M]. Beijing:China Meteorological Press, 2012:21-22.
[38] Minschwaner K, Manney G L, Wang S H, et al. Hydroxyl in the stratosphere and mesosphere-Part 1:Diurnal variability[J]. Atmospheric Chemistry and Physics, 2011, 11(3):955-962.
文章导航

/