南方离子型稀土矿是中国最重要的战略性资源, 广泛分布于江西、广东和广西等南方省区, 常呈离子状态吸附于黏土矿物中, 具有中重稀土元素含量高、开采浸取工艺简单、成本低廉等特征。南方稀土矿开采过程对地下水产生重要影响, 导致矿区周边地下水重金属、氨氮及硫酸根污染等环境问题愈发严峻。为此, 借助自动化监测设备, 在广东开展了地下水动态监测实验, 实现了无线远程监测水中pH 值、氨氮等关键指标的变化, 并在此基础上提出了南方离子型稀土矿“绿色矿山”环境监控系统的概念, 通过整合原地浸矿工艺、地下水无线远程监测系统及污染防控系统, 依靠中央控制系统和自动化控制设备, 控制南方离子型稀土矿开发对地下水的影响, 为实现南方离子型稀土矿的绿色开发提供技术支持。
Ion-absorbed-type rare earth deposit which is the most important strategic resource is distributed extensively in the south of China, such as Jiangxi, Guangdong and Guangxi provinces. It often exist in the form of ions absorbed in clay minerals, and is characterized by middle-heavy rare earth enrichment, simple mining and leaching process and low cost. However, groundwater pollution of heavy metal, ammonia nitrogen and sulfate are very serious during mining. Therefore, it is urgent to perform groundwater monitoring in the mine. In Guangdong province, we used automatic monitoring facilities to perform groundwater dynamic monitoring experiments and made significant progress. Through this research, we obtained changing values of key indicators in the water, i.e., pH value, ammonia nitrogen, etc. In this paper, we present a new green mine environment monitoring system in ion-absorbed-type rare earth deposit. The system integrating in-situ leaching process, system of groundwater monitoring with wireless data transmission, and the control system of environment pollution is to control the influence on groundwater during the mining of ion-absorbed-type rare earth deposit. It may provide technical support for achieving the goal of green mining.
[1] 池汝安, 田君. 风化壳淋积型稀土矿述评[J]. 中国稀土学报, 2007, 25 (6): 641-650. Chi Ru'an, Tian Jun. Review of weathered crust rare earth ore[J]. Journal of the Chinese Rare Earth Society, 2007, 25(6): 641-650.
[2] Hannigan R E, Sholkovitz E R. The development of middle rare earth element enrichments in freshwaters: Weathering of phosphate minerals[J]. Chemical Geology, 2001, 175(3-4): 495-508.
[3] 汤询忠, 李茂楠, 杨殿. 我国离子型稀土矿开发的技术进步[J]. 矿冶工程, 1999, 19(2): 14-16. Tang Xunzhong, Li Maonan, Yang Dian. Scientific and technical progress in development of China's ion-type rare-earths[J]. Mining and Metallurgical Engineering, 1999, 19(2): 14-16.
[4] 王国珍. 我国稀土采选冶炼环境污染及对减少污染的建议[J]. 四川稀土, 2006(3): 30-32. Wang Guozhen. Contamination from rare earth ore mining, dressing and smelting, and suggestions on reduce contamination[J]. Sichuan Rare Earth, 2006(3): 30-32.
[5] 汤洵忠, 李茂楠. 原地浸析采矿方法在离子型稀土矿的应用及其展望 [J]. 湖南有色金属, 1998(4): 1-5. Tang Xunzhong, Li Maonan. The application of the leach mining method in situ in ion-absorbed rare earth metal mine and its future[J]. Hunan Nonferrous Metals, 1998(4): 1-5.
[6] 普传杰, 秦德先, 黎应书. 矿业开发与生态环境问题思考[J]. 中国矿业, 2004(6): 21-24. Pu Chuanjie, Qin Dexian, Li Yingshu. Discussion on issues related to mining developmentand ecological environment[J]. China Mining Magazine, 2004(6): 21-24.
[7] 袁长林. 中国南岭淋积型稀土溶浸采矿正压系统的地质分类与开采技术[J]. 稀土, 2010, 31(2): 22-26. Yuan Changlin. Leaching mining positive pressure system's geological classification and corresponding mining technology of Chinese Nanling illuviation rare earth[J]. Chinese Rare Earths, 2010, 31(2): 22-26.
[8] 赵中波. 离子型稀土矿原地浸析工艺采矿及其推广应用中值得重视的问题[J]. 南方冶金学院学报, 2000, 21(3): 179-183. Zhao Zhongbo. In-situ leach mining of ion-absorbed rare-earth mineral and some problems in application and dissemination[J]. Journal of SouthernInstitute of Metallurgy, 2000, 21(3): 179-183.
[9] Astrom M. Abundance and fractionation patterns of rare earth elements in streams affected by acidsulphate soils[J]. Chemical Geology, 2001, 175(3-4): 249-258.
[10] Johannesson K H, Lyons W B, Yelken MA, et al. Geochemistry of the rare-earth elements in hypersaline and diluteacidic natural terrestrial waters: Complexation behavior and middle rare-earth element enrichment [J]. Chemical Geology, 1996, 133(1): 125-144.
[11] 高志强, 周启星. 稀土矿露天开采过程的污染及对资源和生态环境的影响[J]. 生态学杂志, 2011, 30(12): 2915-2922. Gao Zhiqiang, Zhou Qixing. Contamination from rare earth ore strip mining and its impacts on resources and eco-environment[J]. Chinese Journal of Ecology, 2011, 30(12): 2915-2922.
[12] Sholkovitz E R. The aquatic geochemistry of rare earth elements in rivers and estuaries[J]. Aquatic Geochemistry, 1995(1): 1-43.
[13] Bau M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effects[J]. Geochimica et Cosmochimica Acta, 1999, 63 (1): 67-77.
[14] 柴西龙. 广东省大埔县五丰矿及扩大区稀土矿环境影响报告书[R]. 北京: 中材地质工程勘查研究院有限公司, 2013. Chai Xilong. The EIS of Wufeng rare earth deposit in Dapu Country, Guangdong Province[R]. Beijing: Material Geological Engineering Exploration Academy Limited, 2013.
[15] 张培善, 陶克捷. 中国稀土矿主要矿物学特征[J]. 中国稀土学报, 1985 (3): 1-5. Zhang Peishan, Tao Kejie. Mineralogical characteristics of rare earth minerals in China[J]. Journal of the Chinese Society of Rare Earth, 1985 (3): 1-5.
[16] Goldstein S J, Jacobsen S B. Rare earth elements in river waters[J]. Earth and Planetary Science Letters, 1988, 89(1): 35-47.
[17] Smedley P L. The geochemistry of rare earth elements in groundwater from the Carnmenellis area, southwest England[J]. Geochemical et Cosmochimica Acta, 1991, 55: 2767-2779.
[18] Hirano S, Suzuki K T. Exposure, metabolism and toxicity of rare earths and related compounds[J]. Environmental Health Perspectives, 1996, 104 (Suppl1): 85-95.
[19] 陈志澄, 赵淑援, 黄丽彬, 等. 稀土矿山水系中Pb、Cd、Cu、Zn 的化学形态及其迁移研究[J]. 中国环境科学, 1994, 14(3): 220-225. Chen Zhicheng, Zhao Shuyuan, Huang Libin, et al. Chemical species and transport of Pb, Cd, Cu and Zn in aquatic system of rare earth mining area[J]. China Environmental Science, 1994, 14(3): 220-225.
[20] 祝怡斌, 周连碧, 李青. 离子型稀土原地浸矿水污染控制措施[J]. 有色金属: 选矿部分, 2011(6): 46-49. Zhu Yibin, Zhou Lianbi, Li Qing. Water pollution prevention method for in-situ leach mining of ion-absorbed rare-earth mineral[J]. Nonferrous Metals: Mineral Processing Section, 2011(6): 46-49.