研究论文

铁尾矿物相分析及加气混凝土制备

  • 王长龙 ,
  • 杨建 ,
  • 郑永超 ,
  • 刘世昌 ,
  • 张玉燕
展开
  • 1. 河北工程大学土木工程学院, 邯郸 056038;
    2. 清华大学材料学院;先进材料教育部重点实验室, 北京 100084;
    3. 北京建筑材料科学研究总院;固废资源化利用与节能建材国家重点实验室, 北京 100041;
    4. 工信部赛迪工业和信息化研究院工业节能与环保研究所, 北京 100846
王长龙,副教授,研究方向为固体废弃物资源化及矿物材料,电子信箱:13716996653@139.com。

收稿日期: 2015-04-26

  修回日期: 2015-08-16

  网络出版日期: 2015-10-16

基金资助

国家高技术研究发展计划(863计划)项目(2012AA062405);中国博士后科学基金项目(2015T80095);河北省自然科学基金钢铁联合基金项目(E2015402057);固废资源化利用与节能建材国家重点实验室开放基金项目(SWR-2014-007);陕西省尾矿资源综合利用重点实验室开放基金项目(2014SKY-WK010);河北省建设科学技术研究计划项目(2012-136)

Phase analysis of iron ore tailings and preparation for autoclaved aerated concrete

  • WANG Changlong ,
  • YANG Jian ,
  • ZHENG Yongchao ,
  • LIU Shichang ,
  • ZHANG Yuyan
Expand
  • 1. School of Civil Engineering, Hebei University of Engineering, Handan056038, China;
    2. Advanced Materials Laboratory, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
    3. State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041, China;
    4. China Center for Information Industry Development of MIIT Institute of Industry Energy Conservation and Environment Protection, Beijing 100846, China

Received date: 2015-04-26

  Revised date: 2015-08-16

  Online published: 2015-10-16

摘要

研究区域的铁矿尾矿SiO2质量分数达55.88%, 其成矿地质环境独特而复杂。尾矿的组成以石英、闪石和斜长石为主, 是一种富含硅酸铁的低硅磁铁尾矿。将铁尾矿和硅砂分别粉磨25 和30 min, 在最大限度使用尾矿的条件下, 得出生产铁尾矿加气混凝土的优化方案, 成功制备出干密度为588 kg/m3, 抗压强度为3.99 MPa 的加气混凝土制品。通过XRD 和反应机理的分析结果表明, 成品中主要的物相为水化产物是0.9 nm 托贝莫来石、1.1 nm 托贝莫来石、1.4 nm 托贝莫来石和C-S-H 凝胶, 此外还有铁钙闪石、硬石膏、方解石和水化反应中残留的石英, C-S-H 凝胶作为“黏结剂”和托贝莫来石相互胶结成一个整体, 使制品得到较好的强度。

本文引用格式

王长龙 , 杨建 , 郑永超 , 刘世昌 , 张玉燕 . 铁尾矿物相分析及加气混凝土制备[J]. 科技导报, 2015 , 33(18) : 45 -48 . DOI: 10.3981/j.issn.1000-7857.2015.18.007

Abstract

The SiO2 content of iron ore tailings was 55.88%, the metallogenic geological environment was unique and complex in the study area. The tailings was low-silicon magnet with rich source of iron silicate tailings, mainly composed of quartz, amphibole and plagioclase. To maximize use of iron ore tailings, autoclaved aerated concrete (AAC) samples in the optimized plan were successfully prepared with a bulk density of 588 kg/m3 and compressive strength of 3.99 MPa after the iron ore tailings was milled for 25 min and silica sand for 30 min. The results showed that by analysis of X-ray and reaction mechanism the main mineral phases in the AAC products are 0.9 nm tobermorite, 1.1 nm tobermorite, 1.4 nm tobermorite, and C-S-H hydration products, ferrotschermakite, anhydrite, calcite, dolomite and residual quartz The high strength was obtained because the C-S-H gel as a binder and the tobermorite are cemented into each other.

参考文献

[1] 孟宪久, 唐瑞兴, 徐贵喜, 等. 山西省灵邱县赵北—玄风一带铁矿普查报告[M]. 北京: 全国地质资料馆, 1959. Meng Xianjiu, Tang Ruixing, Xu Guixi, et al. The census report of iron ore of Zhaobei to Xuanfeng in Shanxi Lingqiu[M]. Beijing: National Geological Museum, 1959.
[2] 马鸿文. 结晶岩热力学概论(修订二版)[M]. 北京: 高等教育出版社, 2001. Ma Hongwen. Thermodynamics introduction of crystalline rocks, 2nd edition[M]. Beijing: Higher Education Press, 2001.
[3] 马鸿文, 冯武威, 苗世顶, 等. 一种新型钾矿资源的物相分析及提取碳酸钾的实验研究[J]. 中国科学: 地球科学, 2005, 35(5): 420-427. Ma Hongwen, Feng Wuwei, Miao Shiding, et al. The phase analysis of a new type of potassium mineral resources and the experimental study of extraction the potassium carbonate[J]. Scientia Sinica Terrae, 2005, 35(5): 420-427.
[4] 王万金, 马鸿文, 白志民. 利用不溶性钾矿提钾的研究现状及展望[J]. 地质科技情报, 1996, 15(3): 59-63. Wang Wanjin, Ma Hongwen, Bai Zhimin. Developments and prospements and prospects of extracting potash from insoluble potash ores[J]. Geological Science and Technology Information, 1996, 15(3): 59-63.
[5] Boldyrev V V. Mechanochemistry and mechanical activation of solids[J]. Solid State Ionics, 1993(63-65): 537-543.
[6] CleoK,AnkicaC,BorisS.Mechanochemistryofzeolites:Part3.Amorphization of Zeolite ZSM-5 by Ball Milling[J]. Zeolites, 1995, 15(1): 51-57.
[7] Antsiferov V N, Porozova S E, Matygullina E V. Infulence of mechanochemical activation of a charge on properties of mullite-tialite materials[J]. Science of Sintering, 2004, 36(1): 21-26.
[8] Buyanov R A, Molchanov V V, Boldyrev V V. Mechanochemical activation as a tool of increasing catalytic activity[J]. Catalysis Today, 2009, 144(3): 212-218.
[9] Sydorchuk V, Khalameida S, Zazhigalov V, et al. Influence of mechanochemicalactivation in various media on structure of porous and non-porous silicas[J]. Applied Surface Science, 2010, 257(2): 446-450.
[10] Osvalda S, Piero S, Riccardo C, et al. Mechanochemicalactivation of high-carbon fly ash for enhanced carbon reburning[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2743-2753.
[11] Frost R L, Horváth Erzsébet, Makó Éva, et al. The effect of mechanochemicalactivation upon the intercalation of a high-defect kaolinite with formamide[J]. Journal of Colloid and Interface Science, 2003, 265(2), 386-395.
[12] 郑永超, 倪文, 徐丽, 等. 铁尾矿的机械力化学活化及制备高强结构材料[J]. 北京科技大学学报, 2010, 32(4): 504-508. Zheng Yongchao, Ni Wen, Xu Li, et al. Mechanochemical activation of iron ore tailings and preparation of high-strength construction material [J]. Journal of University of Science and Technology Beijing, 2010, 32 (4), 504-508.
[13] 刘佳, 倪文, 于淼. 用粉煤灰和铁尾矿制备高强混凝土[J]. 材料研究学报. 2012, 26(3): 295-301. Liu Jia, Ni Wen, Yu Miao. Preparation of high-strength concrete by using fly ash and iron ore tailings as major raw materials[J]. Chinese Journal of Materials Research, 2012, 26(3), 295-301.
[14] Yi Z L, Sun H H, Li Chao, et al. Relationship between polymerization degree and cementitious activity of iron ore tailings[J]. International Journal of Minerals, Metallury and Materials, 2010, 17(13): 116-120.
[15] Maeshima T, Nomab H, Sakiyama M, et al. Natural 1.1 and 1.4 nm tobermorites from Fuka, Okayama, Japan: Chemical analysis, cell dimensions, 29Si NMR and thermal behavior[J]. Cement and Concrete Research, 2003, 33(10): 1515-1523.
[16] 方永浩, 庞二波, 王锐, 等. 用低硅铜尾矿制备蒸压灰砂砖[J]. 硅酸盐学报, 2010, 38(4): 559-563. Fang Yonghao, Pang Erbo, Wang Rui, et al. Autoclaced sand-lime bricks from copper mine tailing with low SiO2 content[M]. Journal the Chinese Ceramic Society, 2010, 38(4), 559-563.
[17] Gittos M F, Lorimer G W, Champness P E. An electron-microscopic study of precipitation (exsolution) in an amphibole (the hornblendegrunerite system)[J]. Journal of Materials Science, 1974, 9(2), 184-192.
[18] 乔春雨, 倪文, 王长龙. 四种硅酸盐矿物的蒸压反应活性[J]. 北京科技大学学报, 2014, 36(6): 736-742. Qiao chunyu, Ni Wen, Wang Changlong. Autoclaving reaction activity of four kinds of silicate minerals[J]. Journal of University of Science and Technology Beijing, 2014, 36(6), 736-742.
[19] Bensted J, Barnes P. Structure and performance of cements, 2nd edition [M]. New York: Spon Press, 2002.
文章导航

/