研究论文

基于勒让德多项式逼近法的M-C强度参数概率分布推断

  • 李夕兵 ,
  • 朱唤珍 ,
  • 黄天朗
展开
  • 中南大学资源与安全工程学院, 长沙 410083
李夕兵,教授,研究方向为岩石破裂、岩石动力学及地下工程可靠度,电子信箱:xbli@mail.csu.edu.cn;朱唤珍,硕士研究生,研究方向为地下工程可靠度,电子信箱:zhzcsu2014@163.com。

收稿日期: 2015-03-26

  修回日期: 2015-05-05

  网络出版日期: 2015-10-16

基金资助

国家重点基础研究发展计划(973计划)项目(2010CB732004);国家自然科学基金项目(41272304)

Deduction of probability distribution of M-C strength parameters by Legendre polynomial

  • LI Xibing ,
  • ZHU Huanzhen ,
  • HUANG Tianlang
Expand
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Received date: 2015-03-26

  Revised date: 2015-05-05

  Online published: 2015-10-16

摘要

在岩土工程可靠度分析中, M-C 强度参数概率分布类型研究是一项基础性工作, 为此提出了岩土抗剪强度参数概率分布函数的勒让德多项式推断法。以岩石常规三轴试验数据为原始信息, 根据组合理论和线性回归分析方法, 构建了内摩擦角φ、摩擦系数f 和黏聚力c 的小样本信息库, 对样本数据的概率分布类型进行假设检验, 通过有限比较法得到M-C 强度参数的最优经典概率分布类型为正态分布。基于勒让德正交多项式逼近法得到了φfc 的概率分布函数, 并利用K-S 检验法与正态分布进行计算精度比较。结果表明, 勒让德多项式推断得到的概率分布函数的K-S 检验值比正态分布的小, 更符合样本实际观测数据的分布规律。

本文引用格式

李夕兵 , 朱唤珍 , 黄天朗 . 基于勒让德多项式逼近法的M-C强度参数概率分布推断[J]. 科技导报, 2015 , 33(18) : 49 -55 . DOI: 10.3981/j.issn.1000-7857.2015.18.008

Abstract

It is a fundamental and important topic to study the probability distribution of M-C strength parameters in reliability analysis of geotechnical engineering. The Legendre polynomial is introduced to infer the probability distribution functions of geotechnical shear strength parameters. With the conventional triaxial test data as the original information, an information basis of internal friction angle, friction coefficient f and cohesion c is constructed based on combination theory and linear regression analysis method. Subsequently, hypothesis testing of the probability distribution functions of sample data is conducted. The optional classical probability distribution types of M-C strength parameters are normal distribution, as verified by limited comparison method. The probability distribution functions of internal friction angle, friction coefficient and cohesion are deduced by Legendre orthogonal polynomial numerical approximation method. The K-S test method is used to compare the results of the presented method and normal distribution. It is shown that the K-S test results of probability distribution functions of M-C shear strength parameters deduced by Legendre polynomial are smaller than those of the normal distribution and can be more close to the actual probability distribution.

参考文献

[1] Jaeger J C, Cook N G W, Zimmerman R. Fundamentals of rock mechanics [M]. John Wiley & Sons Inc., 2009.
[2] Bejarbaneh B Y, Armaghani D J, Amin M F M. Strength characterisation of shale using Mohr-Coulomb and Hoek-Brown criteria[J]. Measurement, 2015, 63: 269-281.
[3] Wang S, Wu Z, Guo M, et al. Theoretical solutions of a circular tunnel with the influence of axial in situ stress in elastic-brittle-plastic rock[J]. Tunnelling and Underground Space Technology, 2012, 30: 155-168.
[4] Al-Ajmi A M, Zimmerman R W. Relation between the Mogi and the Coulomb failure criteria[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(3): 431-439.
[5] You M. Three independent parameters to describe conventional triaxial compressive strength of intact rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(4): 350-356.
[6] You M. Comparison of the accuracy of some conventional triaxial strength criteria for intact rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(5): 852-863.
[7] 宫凤强, 侯尚骞, 岩小明. 基于正态信息扩散原理的Mohr-Coulomb强度准则参数概率模型推断方法[J]. 岩石力学与工程学报, 2013, 32 (11): 2225-2234. Gong Fengqiang, Hou Shangqian, Yan Xiaoming. Probability model deduction method of Mohr-Coulomb criteria parameters based on normal information diffusion principle[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2225-2234.
[8] 刘东升, 张浪, 宋强辉, 等. 岩体结构面强度的可靠度分析[J]. 岩土力学, 2009, 30(2): 328-332. Liu Dongsheng, Zhang Lang, Song Qianghui, et al. Reliability analysis of strength for joint in rock mass[J]. Rock and Soil Mechanics, 2009, 30(2): 328-332.
[9] 严春风, 刘东燕, 张建辉, 等. 岩土工程可靠度关于强度参数分布函数概型的敏感性分析[J]. 岩石力学与工程学报, 1999, 18(1): 36-39. Yan Chunfeng, Liu Dongyan, Zhang Jianhui, et al. The susceptibility analysis of reliability for the probability distribution types of parameters in strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(1): 36-39.
[10] 姜彤, 马莎, 李永新. 抗剪强度c、φ 值概率分布对边坡可靠性分析的影响[J]. 华北水利水电学院学报, 2004, 25(3): 46-49. Jiang Tong, Ma Sha, Li Yongxin. The study of effect on the reliability of rock slope by different probability distribution of shear strength c, φ [J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2004, 25(3): 46-49.
[11] 唐小松, 李典庆, 周创兵, 等. 基于Copula函数的抗剪强度参数间相关性模拟及边坡可靠度分析[J]. 岩土工程学报, 2012, 34(12): 2284-2291. Tang Xiaosong, Li Dianqing, Zhou Chuangbing, et al. Modeling dependence between shear strength parameters using Copulas and its effect on slope reliability[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2284-2291.
[12] Tang X S, Li D Q, Rong G, et al. Impact of copula selection on geotechnical reliability under incomplete probability information[J]. Computers and Geotechnics, 2013, 49: 264-278.
[13] 罗冲, 殷坤龙, 陈丽霞, 等. 万州区滑坡滑带土抗剪强度参数概率分布拟合及其优化[J]. 岩石力学与工程学报, 2005, 24(9): 1588-1593. Luo Chong, Yin Kunlong, Chen Lixia, et al. Probability distribution fitting and optimization of shear strength parameters in sliding zone along horizontal-stratum landslides in Wanzhou city[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1588-1593.
[14] 杨凯, 刘东升, 易前应, 等. 重庆市岩石抗剪强度参数统计分析及应用[J]. 后勤工程学院学报, 2008, 24(2): 18-21. Yang Kai, Liu Dongsheng, Yi Qianying, et al. Parameter statistic analysis and application of rock sheering strength in Chongqing[J]. Journal of Logistical Engineering University, 2008, 24(2): 18-21.
[15] 李红英, 谭跃虎, 赵辉. 某滑坡体岩土参数概率分布统计分析方法研究[J]. 地下空间与工程学报, 2012, 8(3): 659-665. Li Hongying, Tan Yuehu, Zhao Hui. The statistical analysis technique research on probability distribution of geotechnical parameters of one landslide[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(3): 659-665.
[16] 宫凤强, 李夕兵, 邓建. 基于正交多项式逼近法的岩土参数概率分布推断[J]. 岩土工程技术, 2005, 19(3): 144-147. Gong Fengqiang, Li Xibing, Deng Jian. The inference of probabilistic distribution of geotechnical parameter by using orthogonal polynomial[J]. Geotechnical Engineering Technique, 2005, 19(3): 144-147.
[17] 宫凤强, 李夕兵, 邓建, 等. 岩土参数概率密度函数的正交多项式推断[J]. 地下空间与工程学报, 2006, 2(1): 108-111. Gong Fengqiang, Li Xibing, Deng Jian, et al. Assessment of probability distribution of mechanical parameters of rock and soil by using Legendre polynomial[J]. Chinese Journal Underground Space and Engineering, 2006, 2(1): 108-111.
[18] 宫凤强, 李夕兵. 基于Legendre正交多项式逼近法的结构可靠性分析 [J]. 工程力学, 2008, 25(6): 225-229. Gong Fengqiang, Li Xibing. Structural reliability analysis using Legendre orthogonal polynomial approximate method[J]. Engineering Mechanics, 2008, 25(6): 225-229.
[19] 赵奎, 邓晓平, 曾鹏, 等. 三轴试验确定抗剪强度参数的计算方法[J]. 矿业研究与开发, 2013, 33(4): 27-29. Zhao Kui, Deng Xiaoping, Zeng Peng, et al. Calculation methods of parameters of shear strength by triaxial compression test[J]. Mining Research and Development, 2013, 33(4): 27-29.
[20] 余东明, 姚海林, 吴少锋. 三轴试验抗剪强度参数值回归分析法的区别与修正[J]. 岩土力学, 2012, 33(10): 3037-3042. Yu Dongming, Yao Hailin, Wu Shaofeng. Difference and modification of regression analysis methods to estimate shear strength parameters obtained by triaxial test[J]. Rock and Soil Mechanics, 2012, 33(10): 3037-3042.
[21] 陈立宏, 陈祖煜, 李广信. 三轴试验抗剪强度指标线性回归方法的讨论[J]. 岩土力学, 2005, 26(11): 1785-1789. Chen Lihong, Chen Zuyu, Li Guangxin. Discussion of linear regression method to estimate shear strength parameters from results of triaxial tests [J]. Rock and Soil Mechanics, 2005, 26(11): 1785-1789.
[22] 宫凤强, 李夕兵, 邓建. 基于第二类切比雪夫多项式的岩土参数概率分布推断[J]. 土工基础, 2005, 19(4): 54-57. Gong Fengqiang, Li Xibing, Deng Jian. Probabilistic distribution of rock and soil parameter by using the second Chebyshe polynomial[J]. Soil Engineering and Foundation, 2005, 19(4): 54-57.
[23] 邓建, 李夕兵, 古德生. 岩石力学参数概率分布的信息熵推断[J]. 岩石力学与工程学报, 2004, 23(13): 2177-2181. Deng Jian, Li Xibing, Gu Desheng. Probability distribution of rock mechanics parameters by using maximum entropy method[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(13): 2177-2181.
文章导航

/