研究论文

基于协方差矩阵的干扰阻塞算法

  • 葛士斌 ,
  • 余华兵 ,
  • 陈新华 ,
  • 孙长瑜
展开
  • 1. 中国科学院声学研究所, 北京 100190;
    2. 中国科学院大学, 北京 100190
葛士斌,博士研究生,研究方向为阵列信号处理,电子信箱:geshibin@126.com

收稿日期: 2014-12-03

  修回日期: 2015-06-10

  网络出版日期: 2015-10-16

基金资助

国家自然科学基金项目(61372180)

Jamming jam method based on covariance matrix

  • GE Shibin ,
  • YU Huabing ,
  • CHEN Xinhua ,
  • SUN Changyu
Expand
  • 1. Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100190, China

Received date: 2014-12-03

  Revised date: 2015-06-10

  Online published: 2015-10-16

摘要

为解决干扰阻塞算法对阵列接收信号构造阻塞矩阵进行干扰抵消后,位于干扰附近的信号会受到严重衰减而无法进一步检测的问题,提出一种基于协方差矩阵的干扰阻塞算法。针对阵列接收信号的协方差矩阵构造阻塞矩阵,利用协方差矩阵的特点实现干扰阻塞算法,减弱因干扰抵消而造成的信号衰减,利于信号的进一步检测。理论分析和计算机仿真结果表明,相对于干扰阻塞算法,基于协方差矩阵的干扰阻塞算法在信号和干扰相距较近时能有效抵消干扰同时减少对目标信号的衰减。

本文引用格式

葛士斌 , 余华兵 , 陈新华 , 孙长瑜 . 基于协方差矩阵的干扰阻塞算法[J]. 科技导报, 2015 , 33(19) : 78 -83 . DOI: 10.3981/j.issn.1000-7857.2015.19.013

Abstract

The jamming jam method (JJM) uses the previous information of the interference to construct a matrix to cancel the interference. However, in the scenario that the signal is embedded in the interference, signal detection is a very difficult problem because the signal will be severely attenuated in interference cancellation. A jamming jam method based on covariance matrix is proposed to deal with this problem. The proposed method will get the Toeplitz averaged covariance matrix from the covariance matrix of the receiving signal, and then uses the Toeplitz averaged covariance matrix to frame the block matrix. The features of the covariance matrix are used to realize the jamming jam method. The proposed method weakens signal attenuation caused by interference suppression which is beneficial to detect the signal. Theoretical analysis and computer simulation show that compared to the JJM, the modified algorithm can effectively cancel interference and reduce signal attenuation.

参考文献

[1] 李启虎. 数字式声纳设计原理[M]. 合肥: 安徽教育出版社, 2003. Li Qihu. Design princeple of digital sonar[M]. Hefei: Anhui Enducation Publisher, 2003.
[2] 余华兵, 孙长瑜, 李启虎. 探潜先锋-拖曳线列阵声纳[J]. 物理, 2006, 35(5): 420-423. Yu Huabing, Sun Changyu, Li Qihu. Towed line array sonar spearheads submarine detection[J]. Physics, 2006, 35(5): 420-423.
[3] 田坦, 刘国枝, 孙大军. 声呐技术[M]. 哈尔滨: 哈尔滨工程大学出版 社, 2000. Tian Tan, Liu Guozhi, Sun Dajun. The sonar technology[M]. Harbin: Harbin Engineering University Press, 2000.
[4] Lemom S G. Towed-array history, 1917 — 2003[J]. IEEE Journal of Oceanic Engineering, 2004, 29(2): 365-373.
[5] 邵云生, 彭会斌, 宋君才. 国外拖曳线列阵声纳技术现状与发展趋势[J]. 舰船电子工程, 2011, 31(1): 10-12. Shao Yunsheng, Peng Huibin, Song Juncai. Current status and development trend of towed linear array sonar of foreign navy [J]. Ship Electronic Engineering, 2011, 31(1): 10-12.
[6] 刘伯胜, 雷家煜. 水声学原理[M]. 哈尔滨: 哈尔滨工程大学出版社, 1993. Liu Bosheng, Lei Jiayu. Principles of underwater sound[M]. Harbin: Harbin Engineering University Press, 1993.
[7] 石杰, 张效民, 侯铁双, 等. 航船噪声引起的低频海洋环境噪声级发展 趋势[J]. 鱼雷技术, 2010, 18(2): 112-116. Shi Jie, Zhang Xiaomin, Hou Tieshuang, et al. Noise level evolution of low-frequency ocean ambient nosie caused by ship sources[J]. Torpedo Technology, 2010, 18(2): 112-116.
[8] Hema Singh, Jharm. Algorithm for suppression of wideband probing in adaptive array with multiple desired signals[J]. Defence Science Journal, 2011, 61(4): 325-330.
[9] 周伟, 惠俊英. 基于声矢量自适应干扰抵消的逆波束形成[J]. 兵工学 报, 2010, 31(9): 1188-1191. Zhou Wei, Hui Junying. Inverse beamforming based on coherent interference vector adaptive canceling[J]. Acta Armamentarii, 2010, 31 (9): 1188-1191.
[10] 陈辉, 苏海军. 强干扰/信号背景下的DOA估计新方法[J]. 电子学报, 2006, 34(3): 530-534. Chen Hui, Su Haijun. A new approach estimate DOA in presence of strong jamming/signal suppression[J]. Acta Electronica Sinica, 2006, 34 (3): 530-534.
[11] 李嶷, 陈新华, 孙长瑜, 等. 声纳中具有方向性宽带强干扰的实时抑 制方法[J]. 应用声学, 2008, 27(4): 257-263. Li Yi, Chen Xinhua, Sun Changyu, et al. Real-time cancellation of directional wideband interferece in sonar[J]. Applied Acoustics, 2008, 27(4): 257-263.
[12] James H. Wilson. Applications of inverse beamforming theory[J]. Journal of Acoustical Socciety of America, 1995, 98(6): 3250-3261.
文章导航

/