研究论文

舰船特装器材多目标优化配置方法

  • 董琪 ,
  • 徐廷学 ,
  • 赵建忠 ,
  • 丛林虎
展开
  • 1. 海军航空工程学院研究生管理大队, 烟台 264001;
    2. 海军航空工程学院兵器科学与技术系, 烟台 264001
董琪,博士研究生,研究方向为装备综合保障理论与技术,电子信箱:lance0627@163.com

收稿日期: 2015-04-02

  修回日期: 2015-06-28

  网络出版日期: 2015-10-16

基金资助

中国航天科技集团一院预研项目(2014-KYFX-0071)

Multi-objective optimization configuration for special equipment materials on warship

  • DONG Qi ,
  • XU Tingxue ,
  • ZHAO Jianzhong ,
  • CONG Linhu
Expand
  • 1. Graduate Students' Brigade, Naval Aeronautical and Astronautical University, Yantai 264001, China;
    2. Department of Ordnance Science and Technology, Naval Aeronautical and Astronautical University, Yantai 264001, China

Received date: 2015-04-02

  Revised date: 2015-06-28

  Online published: 2015-10-16

摘要

针对舰船海上执行任务期间随舰特装器材的保障问题,研究了特装器材的多目标优化配置方法。结合舰船特装器材保障的实际特点,以器材的体积、质量、费用为约束条件,以保障概率和利用率为优化目标,建立多目标多约束特装器材优化配置模型,并改进多目标粒子群算法,保证全局范围粒子多样性,避免算法过快收敛,以求得全局最优解。通过实例对比改进粒子群算法与标准算法的计算结果,分析不同指标权重比组合下的最优配置方案、不同约束条件下的多目标变化趋势,证明了改进粒子群算法的稳定性和多目标优化模型的实用性。

本文引用格式

董琪 , 徐廷学 , 赵建忠 , 丛林虎 . 舰船特装器材多目标优化配置方法[J]. 科技导报, 2015 , 33(19) : 96 -101 . DOI: 10.3981/j.issn.1000-7857.2015.19.016

Abstract

This paper studies the multi-objective optimization configuration of special equipment materials on warships during the mission at sea. Considering the configuration characteristics of special equipment materials on warships, we establish a multiobjective and multi-constraint model with the fill rate and utilization rate as the optimization target, and volume, mass, and cost as the constraints. The multi-objective Particle Swarm Optimization (PSO) algorithm is designed and improved, guaranteeing diversity of particles at the global scope and avoiding excessively fast convergence, to obtain globally optimal solution. We further compare the calculation results between the improved algorithm and standard algorithm, analyzing the optimal configuration under different weight ratio and tendencies under different constraints. The results demonstrate the stability of the improved algorithm and practicability of the multi-objective model.

参考文献

[1] 王乃超, 康锐. 多约束条件下备件库存优化模型及分解算法[J]. 兵工 学报, 2009, 30(2): 247-251. Wang Naichao, Kang Rui. An optimization model for inventory spares under multi-constaints and its decomposition algorithm [J]. Acta ArmamentarⅡ, 2009, 30(2): 247-251.
[2] 阮旻智, 李庆民, 张光宇, 等. 多约束下舰船装备携行备件保障方案优 化方法[J]. 兵工学报, 2013, 34(9): 1144-1149. Ruan Minzhi, Li Qingmin, Zhang Guangyu, et al. Optimization method of carrying spare parts support project for warship equipment under multi-contraints[J]. Acta ArmamentarⅡ, 2013, 34(9): 1144-1149.
[3] 刘勇, 盖强, 赵翀, 等. 多约束下舰船远航备件储量决策[J]. 舰船科学 技术, 2013, 35(11): 144-147. Liu Yong, Gai Qiang, Zhao Chong, et al. Research on spare parts storage decision for ships on sailing in multi-restraint[J]. Ship Science and Technology, 2013, 35(11): 144-147.
[4] 张志华, 费广玉, 应新雅. 基于满足率的随舰备件配置方案[J]. 海军 工程大学学报, 2014, 26(6): 73-77. Zhang Zhihua, Fei Guangyu, Ying Xinya. Configuration scheme for shipboard spares according to sufficient rate[J]. Journal of Naval University of Engineering, 2014, 26(6): 73-77.
[5] 费广玉, 张志华, 刘军, 等. 舰船随舰备件配置方法[J]. 指挥控制与仿 真, 2014, 36(3): 133-136. Fei Guangyu, Zhang Zhihua, Liu Jun, et al. Configuration method of spares on warship[J]. Command Control & Simulation, 2014, 36(3): 133-136.
[6] Zhang Yongqiang, Xu Zongchang, Guo Jian. Shipborne spare parts support scheme based on multi-group and multi-objective particle swarm optimization[J]. Journal of System Simulation, 2014, 26(10): 2423-2429.
[7] Reyes Sierra M, Coello C A C. Multi-objective particle swarm optimizers: a survey of the state-of-the-art[J]. International of Computational Intelligence Research, 2006, 2(3): 287-308.
[8] Kumar R, Sharma D, Sadu A.A hybrid multi-agent based particle swarm optimization algorithm for economic power dispatch [J]. International Journal of Electrical Power and Energy Systems, 2011, 33(1): 115-123.
[9] 叶洪涛, 罗飞, 许玉格.解决多目标优化问题的差分优化算法研究进 展[J].控制理论与应用, 2013, 30(7): 922-928. Ye Hongtao, Luo Fei, Xu Yuge. Differential evolution for solving multiobjective optimization problems: A survey of the state-of-the-art[J]. Control Theory & Applications, 2013, 30(7): 922-928.
[10] 郭俊, 桂卫华, 陈晓方. 基于粗糙集理论与差分进化的混合多目标优 化算法[J]. 控制与决策, 2013, 28(5): 736-740. Guo Jun, Gui Weihua, Chen Xiaofang. A hybrid algorithm based on rough set theory and differential evolution for multi-objective optimization[J]. Control and Decision, 2013, 28(5): 736-740.
[11] 赵建忠, 李海军, 叶文, 等. 改进系统备件满足率约束下的备件优化 配置建模[J].兵工学报, 2013, 34(9): 1187-1192. Zhao Jianzhong, Li Haijun, Ye Wen, et al. Optimization configuration modeling of spare parts under constraint of improved system spare part fill rate[J]. Acta ArmamentarⅡ, 2013, 34(9): 1187-1192.
[12] 肖晓伟, 肖迪, 林锦国, 等. 多目标优化问题的研究概述[J]. 计算机应 用研究, 2011, 28(3): 805-808. Xiao Xiaowei, Xiao Di, Lin Jinguo, et al. Overview on multi-objective optimization problem research[J]. Application Research of Computer, 2011, 28(3): 805-808.
[13] 王丽萍, 江波, 邱飞岳. 基于决策偏好的多目标粒子群算法及其应用[J]. 计算机集成制造系统, 2010, 16(1): 140-148. Wang Liping, Jiang Bo, Qiu Feiyue. Multi-objective particle swarm optimization based on decision preferences and its application[J]. Computer Integrated Manufacturing Systems, 2010, 16(1): 140-148.
文章导航

/