研究论文

地热井热损失影响因素敏感性分析

  • 朱明 ,
  • 段友智 ,
  • 高小荣 ,
  • 岳慧 ,
  • 庞伟 ,
  • 姚志良
展开
  • 1. 中国石化石油工程技术研究院, 北京100101;
    2. 中国石化集团新星石油有限责任公司, 北京100083
朱明,博士研究生,研究方向为完井工具研发及完井工艺技术,电子信箱:zhuming.sripe@sinopec.com

收稿日期: 2015-02-09

  修回日期: 2015-07-22

  网络出版日期: 2015-12-15

基金资助

中国石化科技攻关项目(JP13003)

Heat preservation suggestions and heat loss analysis of geothermal well

  • ZHU Ming ,
  • DUAN Youzhi ,
  • GAO Xiaorong ,
  • YUE Hui ,
  • PANG Wei ,
  • YAO Zhiliang
Expand
  • 1. Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China;
    2. Sinopec Star Petroleum Co., Ltd., Beijing 100083, China

Received date: 2015-02-09

  Revised date: 2015-07-22

  Online published: 2015-12-15

摘要

针对地热井的保温增效问题,根据地热井井身结构特点,建立井筒温度计算模型,并利用A 地热井现场测试数据对模型进行验证,应用该模型对地热井热损失影响因素进行了敏感性分析。结果表明,通过有效洗井等措施,将局部井段产水转化为全井段产水,可使井口产液温度由61.2℃增加至65.7℃;井口产液温度随着日产量的增加而增高,但增幅逐渐减少;改变井身结构能显著提高井口产液温度,但需要进行系统的井身结构优化;采用保温材料的泵管带泵下深400 m 时,井口产液温度达到70.9℃,比常规泵管提高2.7℃。分析结果为地热井保温增效开发提供了理论依据。

本文引用格式

朱明 , 段友智 , 高小荣 , 岳慧 , 庞伟 , 姚志良 . 地热井热损失影响因素敏感性分析[J]. 科技导报, 2015 , 33(22) : 32 -36 . DOI: 10.3981/j.issn.1000-7857.2015.22.004

Abstract

The heat preservation and its cost have become the bottleneck of the geothermal resource development. With this in view, a wellbore temperature calculation model is established based on the characteristics of the well bore configuration of the geothermal well. The model is validated through the test data of the geothermal well A,and it is used for sensitivity analysis of the heat loss factors of the geothermal wells. The results show that a geothermal well is changed from a part segment production to the full segment production through well washing and other effective measures, by which the well head temperature is increased from 61.2℃ to 65.7℃. The wellhead liquid temperature can be increased by increasing the fluid production rate, however, the increasing trend slows down as the rate increases. Also the wellhead liquid temperature is significantly affected by the well bore configuration that needs a systematic optimization. At last a 400 meter heat preservation tubing can increase the wellhead liquid temperature by 2.7℃. Based on the analysis results, the corresponding heat preservation suggestions are proposed, for the development of geothermal wells.

参考文献

[1] 范建勇, 马峰. 全国地热资源调查评价取得重要进展[EB/OL]. 2014- 11-24[2015-02-01]. http://www.cgs.gov.cn/xwtzgg/jrgengxin/28400.htm. Fan Jianyong, Ma Fang. Survey and evaluation of the national geothermal resources has made important progress[EB/OL]. 2014-11-24[2015-02- 01]. http://www.cgs.gov.cn/xwtzgg/jrgengxin/28400.htm.
[2] 孔祥军, 孙振添, 袁利娟, 等. 中国地热产业发展现状及诉求分析[J]. 城 市地质, 2014, 9(Z1): 14-17. Kong Xiangjun, Sun Zhentian, Yuan Lijuan, et al. The development status and demands analysis of China's geothermal industry[J]. Urban Geology, 2014, 9(Z1): 14-17.
[3] 王树芳. 北京地热利用与碳减排[J]. 城市地质, 2014, 9(Z1): 22-25. Wang Shufang. Geothermal resources development and CO2 emission reduction in Beijing[J]. Urban Geology, 2014, 9(Z1): 22-25.
[4] RameyHJ.Wellboreheattransmission[J].JournalofPetroleum Technology, 1962, 14(4): 427-435.
[5] Eickmeier J R, Ersoy D, Ramey H J. Wellbore temperatures and heat losses during production or injection operations[J]. Journal of Canadian Petroleum Technology, 1970, 9(2): 115-121.
[6] Alves Ibere, Alhanati F J S, Shoham Ovadia. A unified model for predicting flowing temperature distribution in wellbores and pipelines[J]. SPE Journal, 1992, 7(4): 363-367.
[7] Jacques Hagoort, Assocs B V. Ramey's wellbore heat transmission revisited[J]. SPE Journal, 2004, 9(4): 465-474.
[8] Yu Yanmin, Lin Tao, Xie Hongxing, et al. Prediction of wellbore temperature profiles during heavy oil production assisted with light oil[C]//2009 SPE Production and Operations Symposium, Oklahoma, USA: SPE, 2009.
[9] Spindler R. Analytical models for wellbore-temperature distribution[J]. SPE Journal, 2011, 16(1): 125-133.
[10] 任瑛. 加热开采稠油工艺的探讨——井筒中的热流体循环[J]. 石油大 学学报: 自然科学版, 1982, 6(4): 53-65. Ren Ying. Thermal production of viscous oil with recycling of hot fluid in wellbore[J]. Journal of the University of Petroleum, China: Edition of Natural Science, 1982, 6(4): 53-65.
[11] 曲占庆, 张琪, 陈德春, 等. 空心杆掺稀油深层稠油举升设计方法研 究[J]. 石油大学学报: 自然科学版, 2000, 24(5): 63-67. Qu Zhanqing, Zhang Qi, Chen Dechun, et al. Design method for lifting heavy oil by mixing light hydrocarbon in hollow rod[J]. Journal of the University of Petroleum, China: Edition of Natural Science, 2000, 24(5): 63-67.
[12] 林日亿, 李兆敏, 王景瑞, 等. 塔河油田超深井井筒掺稀降粘技术研 究[J]. 石油学报, 2006, 27(3): 115-119. Lin Riyi, Li Zhaomin, Wang Jingrui, et al. Technology of blending diluting oil in ultra- deep wellbore of Tahe oilfield[J]. Acta Petrolei Sinica, 2006, 27(3): 115-119.
[13] 柳文莉, 韩国庆, 吴晓东, 等. 稠油掺稀井掺稀参数对井口压力的影 响研究[J]. 科学技术与工程, 2011, 11(10): 2181-2184. Liu Wenli, Han Guoqing, Wu Xiaodong, et al. Studies on impacts of diluting parameters on wellhead pressure of heavy oil production wells assisted with light oil[J]. Science Technology and Engineering, 2011, 11 (10): 2181-2184.
[14] 朱明, 吴晓东, 吴学林, 等. 超深稠油自喷井掺稀深度优化研究[J]. 科 学技术与工程, 2011, 11(26): 6290-6293. Zhu Ming, Wu Xiaodong, Wu Xuelin, et al. The study of diluting depth for heavy oil in ultra- deep flowing well[J]. Science Technology and Engineering, 2011, 11(26): 6290-6293.
[15] 朱明, 吴晓东, 张坤, 等. 环空掺稀降黏工艺井筒温度计算模型[J]. 石 油钻采工艺, 2010, 32(6): 97-100. Zhu Ming, Wu Xiaodong, Zhang Kun, et al. Computational model study of temperature for blending diluting oil in annulus[J]. Oil Drilling & Production Technology, 2010, 32(6): 97-100.
文章导航

/