针对碳酸盐岩缝洞型油藏的井间连通模式,依据储集性宏观上相似、连通关系具有可借鉴性的原则,设计制备裂缝网络和裂缝-溶洞两种简化的缝洞岩心物理模型,通过凝胶调剖实验,研究了不同井间连通模式对调剖的影响。结果表明:两种简化物理模型的含水率变化均表现为经过一段无水采油期后暴性水淹,注凝胶调剖后含水率明显下降,与裂缝-溶洞模型相比,裂缝网络模型含水率下降幅度较大,且后续水驱过程中含水率上升较慢;裂缝网络模型的水驱采收率、最终采收率和采收率提高程度均高于裂缝-溶洞模型;裂缝网络模型注凝胶调整吸水剖面、扩大注入水波及体积的作用更明显,调剖效果更好。
Fractured-cave carbonate reservoir has strong anisotropism, complicated oil-water relationship and flow mechanism. Thus, the application of profile control in these reservoirs is less effective. In this study, we summarized four connecting models. On the basis of macro similarity of the reservoir property and referentiability of the connecting relationship, we designed two simplified physical models of the core, fractured-cave and fractured-net, to investigate the impact of different connecting models on profile control using polymer gel as the profile control agent. The experimental results demonstrate that in the two models, the water-free oil production period was short and the water ratio was close to 100% rapidly after water breakthrough. After profile control, both the water ratios of fractured-cave and fractured-net model were decreased. However, the water cut of fractured-net model was reduced more significantly compared with that of fractured-cave model. The increase of the water ratio for fractured-net model was slower in the subsequent water flooding. The water flooding recovery, ultimate recovery and improved oil recovery degree for the fractured-net model were all higher than those of the fractured-cave model. The role of polymer gel injection in adjusting injection profile and increasing swept volume was more apparent, and the effect of profile control was better.
[1] 程倩, 李曦鹏, 刘中春, 等. 缝洞型油藏剩余油的主要存在形式分析[J]. 西南石油大学学报: 自然科学版, 2013, 35(4): 18-24. Chen Qian, Li Xipeng, Liu Zhongchun, et al. Analysis of majioroccurence modes of remaining oil in karstic-fracture reservoirs[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2013,35(4): 18-24.
[2] 郑小敏, 孙雷, 侯亚平, 等. 缝洞型碳酸盐岩油藏水驱油物理模型对比 实验研究[J]. 重庆科技学院学报: 自然科学版, 2009, 11(5): 20-22. Zheng Xiaomin, Sun Lei, Hou Yaping, et al. Contrast research on water/ oil displacing physical models of fracture-vuggy carbonate reservoir[J]. Journal of Chongqing University of Science and Technology: Natural Sciences Edition, 2009, 11(5): 20-22.
[3] 谭承军, 朱伟, 马旭杰. 塔河碳酸盐岩洞缝型油藏堵水效果评价方法 初探[J]. 新疆地质, 2004, 22(1): 94-97. Tan Chengjun, Zhu Wei, Ma Xujie. The analysis on estimate ways of water plugging effects for fracture and vug carbonate reservoir in the Tahe oil field[J]. Xinjiang Geology, 2004, 22(1): 94-97.
[4] 华北石油勘探开发设计研究院. 华北碳酸盐岩潜山油藏开发[M]. 北 京: 石油工业出版社, 1985. North China petroleum exploration and development institute. North China carbonate buried hill reservoir exploitation[M]. Beijing: Petroleum Industry Press, 1985.
[5] 陆先亮, 段新民, 李琴. 覆盖区碳酸盐岩缝洞定量研究的一种新方法[J]. 石油大学学报: 自然科学版, 2002, 26(5): 12-14. Lu Xianliang, Duan Xinmin, Li Qin. A new method for quantitative study of carbonate fracture-cavity system[J]. Journal of the University of Petroleum, China: Edition of Natural Science, 2002, 26(5): 12-14.
[6] 高玉飞. 塔河油田四区奥陶系裂缝精细描述及分布预测[D]. 东营: 中 国石油大学(华东), 2009. Gao Yufei. Detailed description and distribution predicting of Ordovician fractures in block 4 of Tahe oilfield[D]. Dongying: China University of Petroleum (East China), 2009.
[7] 杨坚, 程倩, 李江龙, 等. 塔里木盆地塔河4 区缝洞型油藏井间连通 程度[J]. 石油与天然气地质, 2012, 33(3): 484-489. Yang Jian, Chen Qian, Li Jianglong, et al. Interwell-connectivity analysis for fracture-vug reservoirs in the block-4 of Tahe oilfield, Tarim basin[J]. Oil & Gas Geology, 2012, 33(3): 484-489.
[8] 胡向阳, 李阳, 权莲顺, 等. 碳酸盐岩缝洞型油藏三维地质建模方法 ——以塔河油田四区奥陶系油藏为例[J]. 石油与天然气地质, 2013, 34(3): 383-387. Hu Xiangyang, Li Yang, Quan Lianshun, et al. Three-dimensional geological modeling of fractured-vuggy carbonate reservoirs: A case from the Ordovician reservoirs in Tahe-IV block,Tahe oilfield[J]. Oil & Gas Geology, 2013, 34(3): 383-387.
[9] 荣元帅, 高艳霞, 李新华. 塔河油田碳酸盐岩缝洞型油藏堵水效果地 质影响因素[J]. 石油与天然气地质, 2012, 32(6): 940-945. Rong Yuanshuai, Gao Yanxia, Li Xinhua. Geological factors influencing water shutoff effects of fractured-vuggy carbonate reservoirs in Tahe oilfield[J]. Oil & Gas Geology, 2012, 32(6): 940-945.
[10] 龙秋莲, 朱怀江, 谢红星, 等. 缝洞型碳酸盐岩油藏堵水技术室内研 究[J]. 石油勘探与开发, 2009(1): 108-112. Long Qiulian, Zhu Huaijiang, Xie Hongxing, et al. Laboratory study of water shutoff in the fracture-cavity carbonate reservoir[J]. Petroleum Exploration and Development, 2009(1): 108-112.
[11] 李江龙, 陈志海, 高树生. 缝洞型碳酸盐岩油藏水驱油微观实验模拟 研究——以塔河油田为例[J]. 石油实验地质, 2009, 31(6): 637-642. Li Jianglong, Chen Zhihai, Gao Shusheng. Microcosmic experiment modeling on water-driven-oil mechanism in fractured-vuggy reservoirs[J]. Petroleum Geology & Experiment, 2009, 31(6): 637-642.
[12] 丁观世, 侯吉瑞, 李巍, 等. 碳酸盐岩缝洞型油藏可视化物理模型底 水驱替研究[J]. 科学技术与工程, 2012, 20(31): 8194-8199. Ding Guanshi, Hou Jirui, Li Wei, et al. The study of visual physical simulation in the development of carbonate fractured cave reservoir with bottom water[J]. Science Technology and Engineering, 2012, 20 (31): 8194-8199.
[13] Cruz-Hernandez J, Islas-Juarez R, Perez-Rosales C, et al. Oil displacement by water in vuggy fractured porous media[C]//SPE Latin American and Caribbean Petroleum Engineering Conference. Richardson, Texas: Society of Petroleum Engineers, 2001.
[14] 郑小敏, 孙雷, 王雷, 等. 缝洞型碳酸盐岩油藏水驱油机理物理模拟 研究[J]. 西南石油大学学报: 自然科学版, 2010, 32(2): 89-92. Zheng Xiaomin, Sun Lei, Wang Lei, et al. Physical smulation of water displacing oil mechanism for vuggy fractured carbonate rock reservoir[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2010, 32(2): 89-92.
[15] 郑小敏, 孙雷, 王雷, 等. 缝洞型油藏大尺度可视化水驱油物理模拟 实验及机理[J]. 地质科技情报, 2010, 29(2): 77-81. Zheng Xiaomin, Sun Lei, Wang Lei, et al. Large-scale visible water/ oil displacing physical modeling experiment and mechanism research of fracture-vuggyreservoir[J]. Geological Science and Technology Information, 2010, 29(2): 77-81.