研究论文

Thorpe分析法、垂直上升速度扰动法计算湍流参数的比较

  • 刘晓 ,
  • 王雨婷
展开
  • 河南师范大学数学与信息科学学院, 新乡453007
刘晓,副教授,研究方向为计算数学、大气动力学,电子信箱:liuxiao@htu.cn

收稿日期: 2015-01-22

  修回日期: 2015-07-31

  网络出版日期: 2016-01-07

基金资助

国家自然科学基金项目(41374158,41574143);河南省教育厅科学技术研究重点项目(13A110547);河南省高等学校青年骨干教师资助项目(2014GGJS-047);河南师范大学优秀青年科学基金(14YQ006)

Comparative study of turbulence parameter calculation based on Thorpe analysis and vertical velocity fluctuation method

  • LIU Xiao ,
  • WANG Yuting
Expand
  • School of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China

Received date: 2015-01-22

  Revised date: 2015-07-31

  Online published: 2016-01-07

摘要

基于1998 年中国南海季风实验期间(5 月5—25 日,6 月5—25 日)科学#1 号考察船上的高分辨率气球探空数据,分别采用Thorpe 分析方法和利用气球垂直上升速度的扰动计算湍流参数的方法,计算对流层和低平流层湍动能耗散率ε和湍流扩散系数K。Thorpe 分析法是从温度的角度考虑,根据Thorpe 尺度LT与湍流参数之间的关系计算湍流参数,而利用垂直上升速度的扰动计算湍流参数的方法是从速度的角度考虑,利用垂直上升速度的扰动σW与湍动能耗散率ε之间的关系计算湍流参数。通过对两种方法及其计算结果进行比较发现:在垂直结构方面,不论是月平均结果还是日平均结果,两种方法计算出的ε和湍流扩散系数K 均是在10 km 以上而在对流层顶以下较大,在对流层顶以上较小;两种方法计算出的K 的峰值高度均在15 km 左右;在数值范围方面,ε的取值均在10-6 ~10-2 m2·s-3,K 的取值均在0~10 m2·s-1,但是采用垂直上升速度的扰动计算湍流参数的方法求得的湍流参数小于Thorpe 分析方法得到的湍流参数;峰值高度方面,采用Thorpe 分析方法所得ε的峰值高度在15 km 左右,而采用垂直上升速度扰动方法所得ε的峰值高度在17 km 左右。

本文引用格式

刘晓 , 王雨婷 . Thorpe分析法、垂直上升速度扰动法计算湍流参数的比较[J]. 科技导报, 2015 , 33(24) : 92 -97 . DOI: 10.3981/j.issn.1000-7857.2015.24.015

Abstract

On the basis of the high resolution wind and temperature data observed by the radiosound on the Kexue #1 scientific observation ship during SCSMEX (South China Sea Monsoon Experiment) in 1998 (May 5-25, June 5-25), the turbulence parameters (kinetic energy dissipation rate ε and turbulence diffusivity K) in the troposphere and lower stratosphere (TLS) are derived using the following two methods: Thorpe analysis, which calculates the turbulence parameters on the basis of the temperature data and Thorpe length LT, and the vertical velocity fluctuation method, which calculates the turbulence parameters on the basis of vertical velocity data and their fluctuations σW. The results from the two methods exhibit similarities in terms of the vertical structure and magnitudes of ε and K. In the respect of vertical structures, ε and K are relatively large above 10 km and below the tropopause (~17-18 km), no matter the averaged results are on a monthly or daily basis. By contrast, they are relatively small above the tropopause. The peak values of K derived using the two methods are both at around 15 km. The magnitudes of ε and K calculated using the two methods are both in the range of 10-6-10-2 m2·s-3 for ε and 0-10 m2·s-1 for K. The differences of the results from the two methods are that the turbulence parameters calculated by the vertical velocity fluctuation method are smaller than those by Thorpe analysis; the peak value of ε is at about 15 km according to Thorpe analysis, but at about 17 km according to the vertical velocity fluctuation method.

参考文献

[1] 李子良, 黄仪方. 大气湍流引起飞机颠簸的理论分析和数值实验[J]. 中国海洋大学学报, 2008, 38(6): 887-894. Li Ziliang, Huang Yifang. Numerical simulation and dynamical analysis of atmospheric turbulence influence on the aircraft bumps[J]. Periodical of Ocean University of China, 2008, 36(6): 887-894.
[2] Nath D, Venkat Ratnam M, Patra A K, et al. Turbulence characteristics over tropical station Gadanki (13.5°N, 79.2°E) estimated using high-reso-lution GPS radiosonde Data[J/OL]. Journal of Geophysical Geophysical Research, 2010, 115(D7): 1-13[2015-01-22]. doi:10.1029/2009JD012347.
[3] Wilson R, Dalaudier F, Luce H. Can one detect small-scale turbulence from standard meteorological radiosondes[J]. Atmospheric Measurement Techniques, 2011, 4: 795-804.
[4] Clayson C A, Kantha L. On turbulence and mixing in the free atmo-sphere inferred from high-resolution soundings[J]. Journal of Atmospher-ic and Oceanic Technology, 2008, 25: 833-849.
[5] Gavrilov N M, Luce H, Crochet M, et al. Turbulence parameter estima-tions from high-resolution balloon temperature measurements of the MUTSI-2000 campaign[J]. Annales Geophysicae, 2005, 23: 2401-2413.
[6] Zhang Shaodong, Yi Fan, Huang Chunming, et al. High vertical resolu-tion analyses of gravity waves and turbulence at a midlatitude station[J]. Journal of Geophysical Research, 2012, 117: D02103.
[7] Weinstock J. Energy dissipation rate of turbulence in the stable free at-mosphere[J]. Journal of the Atmospheric Sciences, 1981, 38(4): 880-883.
[8] Alappattu D P, Kunhikrishnan P K. First observations of turbulence pa-rameters in the troposphere over the Bay of Bengal and the Arabian Sea using radiosonde[J]. Journal of Geophysical Research, 2010, 115: D06105.
[9] 丁一汇, 李崇银, 柳艳菊, 等. 南海季风试验研究[J]. 气候与环境研 究, 2002, 7(2): 202-208. Ding Yihui, Li Chongyin, Liu Yanju, et al. South China Sea monsoon experiment[J]. Climatic and Environmental Research, 2002, 7(2): 202-208.
[10] Ding Yihui, Li Chongyin, Liu Yanju. Overview of the South China Sea during SCSMEX field experiment in 1998[J]. Advances in Atmospher-ic Sciences, 2004, 21(3): 255-276.
[11] 柳艳菊, 丁一汇. 南海季风爆发前后大气层结和混合层的演变特征[J]. 气候与环境研究, 2000, 5(4): 459-468. Liu Yanju, Ding Yihui. Evolution of the atmospheric stratification and mixed layer before and after monsoon onset over the South China Sea[J]. Climatic and Environmental Research, 2000, 5(4): 459-468.
[12] Ciesielski P E, Johnson R H. Contrasting characteristics of convection over the Northern and Southern South China Sea during SCSMEX[J]. Monthly Weather Review, 2006, 134(4): 1041-1062.
[13] Thorpe S A. Turbulence and mixing in a Scottish Loch[J]. Philosophi-cal Transactions of the Royal Society of London, 1977, 286A: 125-181.
[14] Wilson R, Luce H, Dalaudier F. Turbulence patch identification in po-tential density or temperature profiles[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(6): 977-993.
[15] Liu Xiao, Xu Jiyao, Yuan Wei. Diurnal variations of turbulence param-eters over the tropical oceanic upper troposphere during SCSMEX[J]. Science China Technological Sciences, 2014(2): 351-359..
[16] Bertin F, Barat J, Wilson R. Energy dissipation rates, eddy diffusivity and the Prandtl number: An in situ experimental approach and its con-sequences on radar estimate of turbulent parameters[J]. Radio Science, 1997, 32(2): 791-804.
[17] Hocking W K. Measurements of turbulent energy dissipation rate in the middle atmosphere by radar techniques: A review[J]. Radio Sci-ence, 1985, 20: 1403-1422.
[18] Holton J R, Peter H H, McIntyre M E, et al. Stratosphere-troposphere exchange[J]. Reviews of Geophysics, 1995, 33(4): 403-439.
[19] 闫俊岳, 姚华东, 李江龙, 等. 1998年南海季风爆发期间近海面层大 气湍流结构和通量输送的观测研究[J]. 气候与环境研究, 2000, 5(4): 447-458. Yan Junyue, Shao Huadong, Li Jianglong, et al. Characteristics of tur-bulence structure and flux transfer on the sea surface during the onset of SCS Monsoon in 1998[J]. Climatic and Environmental Research, 2000, 5(4): 447-458.
[20] Zhang Yehui, Zhang Shaodong, Yi Fan. Intensive radiosonde observa-tions of lower tropospheric inversion layers over Yichang, China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71: 180-190.
文章导航

/