综述文章

离子液体在热致变色材料中的应用

  • 余林颇 ,
  • 陈政
展开
  • 宁波诺丁汉大学可持续能源技术研究中心, 宁波315100
余林颇,高级研究员,研究方向为热致变色材料、储能材料及电化学,电子信箱:Linpo.Yu@nottingham.edu.cn

收稿日期: 2015-07-06

  修回日期: 2015-08-14

  网络出版日期: 2016-01-07

基金资助

宁波市科学技术协会资助项目(K201503-5);Hermes Fellowship

Application of ionic liquids in thermochromic materials

  • YU Linpo ,
  • CHEN George Zheng
Expand
  • Centre for Sustainable Energy Technologies, the University of Nottingham Ningbo China, Ningbo 315100, China

Received date: 2015-07-06

  Revised date: 2015-08-14

  Online published: 2016-01-07

摘要

含有大量羟基的离子液体可以与镍(II)金属配合物发生配位反应,含有二者的溶液具有热致变色性质。这种新型的热致变色体系,只需要普通太阳光的热量就能驱动变色,具有变色灵敏、环境友好等特点。这种热致变色体系在与高分子材料聚偏氟乙烯(PVDF)形成复合物后,仍然具有优良的热致变色特性,且这种复合物可以由不同的镍(II)金属配合物组成。另外,这种热致变色体系还可以通过引入额外的氯离子,使体系在温度低于0℃以下时有颜色变化响应,体系转变为冷致变色体系。本文介绍几种基于羟烷基咪唑类和基于季铵盐的深共熔溶剂类离子液体,分别与镍(II)金属配合物所组成的热致/冷致变色体系及相关基础研究和复合膜应用研究工作。

本文引用格式

余林颇 , 陈政 . 离子液体在热致变色材料中的应用[J]. 科技导报, 2015 , 33(24) : 98 -105 . DOI: 10.3981/j.issn.1000-7857.2015.24.016

Abstract

Because of existence of abundant hydroxyl groups, both of hydroxyly-3-methylimidazolium cation based ionic liquids and deep eutectic solvent can react with the Ni(II) complexes showing thermochromism. This novel thermochromic system can be driven by the solar heat, and are sensible and environmentally friendly. The ILs-Ni(II)-complex-PVDF composite films are thermochromic with different nickel complexes. Cryo-solvatochromism in response to cooling from room temperature to well below 0℃ can be achieved in a 1-hydroxylalkyl-3-methylimidazolium cation based ionic liquid, containing a Ni(II) complex and excess 1-butyl-3-methylimidazolium chloride. This review presents the recent fundamental and application work on a number of thermochromic and cryochromic systems based on Ni(II) complex and Ionic liquids, including the 1-hydroxylalkyl-3-methylimidazolium cation based ionic liquids and deep eutectic solvent.

参考文献

[1] Linert W, Fukuda Y, Camard A. Chromotropism of coordination com-pounds and its application in solution[J]. Coordination Chemistry Re-views, 2001, 218: 113-152.
[2] Seeboth A, Lotzsch D, Ruhmann R, et al. Thermochromic polymers-Function by design[J]. Chemical Reviews, 2014, 114(5): 3037-3068.
[3] Grubb W T, Kistiakowsky G B. On the nature of thermochromism[J]. Journal of the American Chemical Society, 1950, 72(1): 419-424.
[4] Koelsch C F. Steric factors in thermochromism of spiropyrans and in re-activities of certain methylene groups[J]. The Journal of Organic Chemis-try, 1951, 16(9): 1362-1370.
[5] Day J H. Thermochromism[J]. Chemical Reviews, 1963, 63(1): 65-80.
[6] Day J H. Thermochromism of inorganic compounds[J]. Chemical Reviews, 1968, 68(6): 649-657.
[7] Kamalisarvestani M, Saidur R, Mekhilef, et al. Performance, materials and coating technologies of thermochromic thin films on smart windows[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 353-364.
[8] Gao Y, Luo H, Zhang Z, et al. Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing[J]. Nano Energy, 2012, 1(2): 221-246.
[9] Seeboth A, Ruhmann R, Muhling O. Thermotropic and thermochromic polymer based materials for adaptive solar control[J]. Materials, 2010, 3 (12): 5143-5168.
[10] Park I S, Park H J, Kim J-M. A soluble, low-temperature thermochro-mic and chemically reactive polydiacetylene[J]. ACS Applied Materi-als & Interfaces, 2013, 5(17): 8805-8812.
[11] Liu P, Liu L, Jiang K, et al. Carbon-nanotube-film microheater on a polyethylene terephthalate substrate and its application in thermochro-mic display[J]. Small, 2011, 7(6): 732-736.
[12] Chung K, Cho J K, Park E S, et al. Three-dimensional in situ tempera-ture measurement in microsystems using Brownian motion of nanoparti-cles[J]. Analytical Chemistry, 2009, 81(3): 991-999.
[13] Vuillaume P Y, Sallenave X, Bazuin C G. Thermotropism in tail-end (dimethylamino) pyridinium polymethacrylates with bromine and octyl-sulfonate counterions[J]. Macromolecules, 2006, 39(24): 8339-8346.
[14] Clark E A, Lipson J E G. LCST and UCST behaviour in polymer solu-tions and blends[J]. Polymer, 2012, 53(2): 536-545.
[15] Sato T, Katayama K, Suzuki T, et al. UCST and LCST behaviour in polymer blends containing poly (methyl methacrylate-statstyrene) [J]. Polymer, 1998, 39(4): 773-780.
[16] Li J, Hong X, Liu Y, et al. Highly photoluminescent CdTe/poly (N-iso-propylacrylamide) temperature-sensitive gels[J]. Advanced Materials, 2005, 17(2): 163-166.
[17] Chung W Y, Lee S M, Koo S M, et al. Surfactant-free thermochromic hydrogel system: PVA/borax gel networks containing pH-sensitive dyes[J]. Journal of Applied Polymer Science, 2004, 91(2): 890-893.
[18] Seeboth A, Kriwanek J, Vetter R. Novel chromogenic polymer gel net-works for hybrid transparency and color control with temperature[J]. Advanced Materials, 2000, 12(19): 1424-1426.
[19] Wang H, Zhang K-Q. Photonic crystal structure with tunable structure color as colorimetric sensors[J]. Sensors, 2013, 13(4): 4192-4213.
[20] Ge J, Yin Y. Responsive photonic crystals[J]. Angewandte Chemie In-ternational Edition, 2011, 50(7): 1492-1522.
[21] Seeboth A, Lotzsch D, Potechius E, et al. Thermochromic effects of leuco dyes studied in polypropylene[J]. Chinese Journal of Polymer Sci-ence, 2006, 24(4): 363-368.
[22] MacLaren D C, White M A. Dye-developer interactions in the crystal violet lactone-lauryl gallate binary system: Implications for thermo-chromism[J]. Journal of Materials Chemistry, 2003, 13(7): 1695-1700.
[23] Reish M E, Huff G S, Lee W, et al. Thermochromism, Franck-Condon analysis and interfacial dynamics of a donor-acceptor copolymer with a low band gap[J]. Chemistry of Materials, 2015, 27(8): 2770-2779.
[24] Guo H, Zhang J, Porter D, et al. Ultrafast and reversible thermochro-mism of a conjugated polymer material based on the assembly of pep-tide amphiphiles[J]. Chemical Science, 2014, 5(11): 4189-4195.
[25] Tanioku C, Matsukawa K, Matsumoto A. Thermochromism and struc-tural change in polydiacetylenes including carboxy and 4-carboxyphe-nyl group as the intermolecular hydrogen bond linkages in the side chain[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 940-948.
[26] Ampornpun S, Montha S, Tumcharern G, et al. Odd-even and hydro-phobicity effect of diacetylene alkyl chains on thermochromic revers-ibility of symmetrical and unsymmetrical diyndiamide polydiacetylenes[J]. Macromolecules, 2012, 45(22): 9038-9045.
[27] Jelinek R, Ritenberg M. Polydiacetylene -recent molecular advances and applications[J]. RSC Advances, 2013, 3(44): 21192-21201.
[28] Tamaki H, Watanabe H, Kamiyama S, et al. Size-dependent thermo-chromism through enhanced electron-phonon coupling in 1 nm quan-tum dots[J]. Angewandte Chemie International Edition, 2014, 53(40): 10706-10709.
[29] Serier-Brault H, Thibault L, Legrain M, et al. Thermochromism in Yt-trium iron garnet compounds[J]. Inorganic Chemistry, 2014, 53(23): 12378-12383.
[30] Barron S C, Gorham J M, Patel M P, et al. High-throughput measure-ments of thermochromic behaviour in V1-xNbxO2 combinatorial thin film libraries[J]. ACS Combinatorial Science, 2014, 16(10): 526-534.
[31] Yu L, Chen G Z. Cryo-solvaochromism in ionic liquids[J]. RSC Advances, 2014, 4(76): 40281-40285.
[32] Gu C D, Tu J P. Thermochromic behaviour of chloro-nickel(II) in deep eutectic solvents and their application in thermochromic compos-ite films[J]. RSC Advances, 2011, 1(7): 1220-1227.
[33] Wei X, Yu L, Wang D, et al. Thermo-solvatochromism of chloro-nick-el complexes in 1-hydroxyalkyl-3-methyl-imidazolium cation based ionic liquids[J]. Green Chemistry, 2008, 10(3): 296-305.
[34] Turchetti D A, Domingues R A, Zanlorenzi C, et al. A photophysical interpretation of the thermochromism of a polyfluorene derivative-Euro-pium complex[J]. The Journal of Physical Chemistry C, 2014, 118(51): 30079-30086.
[35] Hosokawa H, Funasako Y, Mochida T. Colorimetric solvent indicators based on Nafion membranes incorporating Nickel(II)-chelate complexes[J]. Chemistry -A European Journal, 2014, 20(46): 15014-15020.
[36] Wei X, Yu L, Jin X, et al. Solar-thermochromism of pseudocrystalline nanodroplets of ionic liquid-NiII complexes immobilized inside trans-lucent microporous PVDF films[J]. Advanced Materials, 2009, 21(7): 776-780.
[37] El-Ayaan U, Murata F, Fukuda Y. Thermochromism and solvatochro-mism in solution[J]. Monatshefte fur Chemie, 2001, 132(11): 1279-1294.
[38] Wasserscheid P, Welton T. Ionic liquids in synthesis[M]. Weinheim: Wiley-VCH Verlag, 2002: 44-45.
[39] Zhang J L, Gu C D, Fashu S, et al. Enhanced corrosion resistance of Co-Sn Alloy coating with a self-organized layered structure electrode-posited from deep eutectic solvent[J]. Journal of The Electrochemical Society, 2015, 162(1): D1-D8.
[40] Abbott A P, Harris R C, Holyoak F, et al. Electrocatalytic recovery of elements from complex mixtures using deep eutectic solvents[J]. Green Chemistry, 2015, 17(4): 2172-2179.
[41] Griffiths T R, Scarrow R K. Effects of cations upon absorption spectra. Part 2.-Formation of tetrahedral tetrachloronickelate(II) in aqueous so-lution[J]. Transactions of the Faraday Society, 1969, 65: 1727-1733.
[42] Scaife D E, Wood K P. Influence of temperature on some octahedraltetrahedral equilibria in solution[J]. Inorganic Chemistry, 1967, 6(2): 358-365.
[43] Fine D A. Tetrahedral bromide complexes of Nicekl(II) in organic sol-vent[J]. Inorganic Chemistry, 1965, 4(3): 345-350.
[44] Netzel D A, Droll H A. Chloride and bromide complexes of Nickel(II) in aqueous solution[J]. Inorganic Chemistry, 1963, 2(2): 412-413.
[45] Griffiths T R, Scarrow P K. Effect of cations upon absorption spectra. Part 4. -Octahedral-tetrahedral equilibria between chloro-nickel(II) complexes in ethylene glycol and glycerol[J]. Transactions of the Fara-day Society, 1969, 65: 3179-3186.
[46] Abbott A P, Capper G, Davies D L, et al. Selective extraction of met-als from oxide matrixes using choline-based ionic liquids[J]. Inorganic Chemistry, 2005, 44(19): 6497-6499.
[47] Abbott A P, Ttaib K E, Ryder K S, et al. Electrodeposition of nickel using eutectic based ionic liquids[J]. Transactions of the Institute of Materials Finishing, 2008, 86(4): 234-240.
文章导航

/