专题论文

普鲁士蓝在肿瘤诊断和治疗中的研究进展

  • 蔡晓军 ,
  • 马明 ,
  • 陈航榕 ,
  • 施剑林
展开
  • 中国科学院上海硅酸盐研究所, 高性能陶瓷与超微结构国家重点实验室, 上海 200050
蔡晓军,博士研究生,研究方向为新型纳米药物载体多功能化,电子信箱:c1x2j34@163.com

收稿日期: 2015-08-17

  修回日期: 2015-12-02

  网络出版日期: 2016-02-04

基金资助

国家杰出青年科学基金项目(51225202);国家自然科学基金项目(51402329)

Progress of applications of the Prussian blue in cancer diagnosis and therapy

  • CAI Xiaojun ,
  • MA Ming ,
  • CHEN Hangrong ,
  • SHI Jianlin
Expand
  • State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

Received date: 2015-08-17

  Revised date: 2015-12-02

  Online published: 2016-02-04

摘要

普鲁士蓝是一种美国食品和药物管理局批准的、作为临床上治疗铊等放射性元素中毒的解毒剂,具有良好的生物相容性及生物安全性。普鲁士蓝纳米粒子在尺寸和结构上的可调控性及本身的性能,使得其在药物输运、分子影像、基因治疗、光热治疗肿瘤等肿瘤的诊断和治疗方面发挥着重要作用。本文以肿瘤诊疗方面的医学应用需求为背景,综述了基于普鲁士蓝的纳米诊疗剂在光声成像(PA)、核磁共振成像(MRI)、超声成像(US)、多模式成像,及作为光热转换剂和药物传输系统(DDS),实现对肿瘤的光热治疗、化疗和基因治疗等研究现状和发展趋势。

本文引用格式

蔡晓军 , 马明 , 陈航榕 , 施剑林 . 普鲁士蓝在肿瘤诊断和治疗中的研究进展[J]. 科技导报, 2016 , 34(2) : 18 -26 . DOI: 10.3981/j.issn.1000-7857.2016.2.001

Abstract

With good biocompatibility and biological safety, the Prussian blue (PB) is used as a clinical medicine for the treatment of radioactive exposure, which is approved by the USA Food and Drug Administration. Owing to the easiness of the control of size, structure, surface modification and its other good performances, the PB nanoparticles (PB NPs) play an important role in the biomedical field including the drug delivery system (DDS), the molecular imaging, the gene therapy, and the photothermal therapy. This paper reviews the most recent research advances and discusses the future development trends of the applications of the PB-based nanotheranostics in the diagnosis including the photoacoustic imaging (PA), the magnetic resonance imaging (MRI), the ultrasonic imaging (US) and the multimodal imaging, as well as in the therapy including the photothermal therapy, the gene therapy and the chemotherapy.

参考文献

[1] Janib S M, Moses A S, MacKay J A. Imaging and drug delivery using theranostic nanoparticles[J]. Advanced Drug Delivery Reviews, 2010, 62 (11): 1052-1063.
[2] Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery[J]. Chemical Society Reviews, 2010, 39(11): 4326-4354.
[3] Lammers T, Aime S, Hennink W E, et al. Theranostic Nanomedicine[J]. Accounts of Chemical Research, 2011, 44(10): 1029-1038.
[4] Gu Z, Yan L, Tian G, et al. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications[J]. Advanced Materials, 2013, 25(28): 3758-3779.
[5] Fan Z, Fu P P, Yu H, et al. Theranostic nanomedicine for cancer detection and treatment[J]. Journal of Food and Drug Analysis, 2014, 22 (1): 3-17.
[6] Muller R H, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50(1): 161-177.
[7] Soppimath K S, Aminabhavi T M, Kulkarni A R, et al. Biodegradable polymeric nanoparticles as drug delivery devices[J]. Journal of Controlled Release, 2001, 70(1/2): 1-20.
[8] Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue[J]. Advanced Drug Delivery Reviews, 2003, 55(3): 329-347.
[9] Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drug delivery[J]. Angewandte Chemie-international Edition, 2007, 46(40): 7548-7558.
[10] Veiseh O, Gunn J W, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging[J]. Advanced Drug Delivery Reviews, 2010, 62(3): 284-304.
[11] Tang F, Li L, Chen D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery[J]. Advanced Materials, 2012, 24 (12): 1504-1534.
[12] Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery[J]. Chemical Society Reviews, 2012, 41(9): 3679-3698.
[13] Cheng L, Wang C, Feng L, et al. Functional nanomaterials for phototherapies of cancer[J]. Chemical Reviews, 2014, 114(21): 10869-10939.
[14] Xu M H, Wang L H V. Photoacoustic imaging in biomedicine[J]. Review Of Scientific Instruments, 2006, doi: 10.1063/1.2195024.
[15] Wang L V, Hu S. Photoacoustic tomography: In vivo imaging from organelles to organs[J]. Science, 2012, 335(6075): 1458-1462.
[16] Liang X, Deng Z, Jing L, et al. Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging[J]. Chemical Communications, 2013, 49(94): 11029-11031.
[17] Shokouhimehr M, Soehnlen E S, Hao J H, et al. Dual purpose Prussian blue nanoparticles for cellular imaging and drug delivery: A new generation of T1-weighted MRI contrast and small molecule delivery agents[J]. Journal Of Materials Chemistry, 2010, 20(25): 5251-5259.
[18] Shokouhimehr M, Soehnlen E S, Khitrin A, et al. Biocompatible Prussian blue nanoparticles: Preparation, stability, cytotoxicity, and potential use as an MRI contrast agent[J]. Inorganic Chemistry Communications, 2010, 13(1): 58-61.
[19] Fu G, Liu W, Li Y, et al. Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance[J]. Bioconjugate Chemistry, 2014, 25(9): 1655-1663.
[20] Dumont M F, Yadavilli S, Sze R W, et al. Manganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors[J]. International Journal of Nanomedicine, 2014, 9: 2581-2595.
[21] Dumont M F, Hoffman H A, Yoon P R S, et al. Biofunctionalized gadolinium-containing Prussian blue nanoparticles as multimodal molecular imaging agents[J]. Bioconjugate Chemistry, 2014, 25(1): 129-137.
[22] Yang F, Hu S L, Zhang Y, et al. A hydrogen peroxide-responsive O2 nanogenerator for ultrasound and magnetic-resonance dual modality imaging[J]. Advanced Materials, 2012, 24(38): 5205-5211.
[23] Jia X, Cai X, Chen Y, et al. Perfluoropentane-encapsulated hollow mesoporous Prussian blue nanocubes for activated ultrasound imaging and photothermal therapy of cancer[J]. ACS Applied Materials & Interfaces, 2015, 7(8): 4579-4588.
[24] Fu G, Liu W, Feng S, et al. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy[J]. Chemical Communications, 2012, 48(94): 11567-11569.
[25] Cheng L, Gong H, Zhu W, et al. PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy[J]. Biomaterials, 2014, 35(37): 9844-9852.
[26] Li X D, Liang X L, Ma F, et al. Chitosan stabilized Prussian blue nanoparticles for photothermally enhanced gene delivery[J]. Colloids And Surfaces B-biointerfaces, 2014, 123: 629-638.
[27] Lian H Y, Hu M, Liu C H, et al. Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery[J]. Chem Commun (Camb), 2012, 48(42): 5151-5153.
[28] Jing L, Liang X, Deng Z, et al. Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer[J]. Biomaterials, 2014, 35(22): 5814-5821.
[29] Zhu W, Liu K, Sun X, et al. Mn2+-doped Prussian blue nanocubes for bimodal imaging and photothermal therapy with enhanced performance [J]. ACS Applied Materials & Interfaces, 2015, 7(21): 11575-11582.
[30] Zhang Z J, Wang J, Chen C H. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging[J]. Advanced Materials, 2013, 25(28): 3869-3880.
[31] Cai X, Jia X, Gao W, et al. A versatile nanotheranostic agent for efficient dual-mode imaging guided synergistic chemo-thermal tumor therapy[J]. Advanced Functional Materials, 2015, 25(17): 2520-2529.
[32] Huang Y M, Hu L, Zhang T T, et al. Mn3[Co(CN)6]2@SiO2 core-shell nanocubes: Novel bimodal contrast agents for MRI and optical imaging [J]. Scientific Reports, 2013, doi: 10.1038/srep02647.
[33] Kandanapitiye M S, Valley B, Yang L D, et al. Gallium analogue of soluble Prussian blue KGaFe(CN)6 center dot nH2O: Synthesis, characterization, and potential biomedical applications[J]. Inorganic Chemistry, 2013, 52(6): 2790-2792.
[34] Kandanapitiye M S, Wang F J, Valley B, et al. Selective ion exchange governed by the Irving-Williams series in K2Zn3Fe(CN)6 nanoparticles: Toward a designer prodrug for Wilson's disease[J]. Inorganic Chemistry, 2015, 54(4): 1212-1214.
[35] Perrier M, Kenouche S, Long J, et al. Investigation on NMR relaxivity of nano-sized cyano-bridged coordination polymers[J]. Inorganic Chemistry, 2013, 52(23): 13402-13414.
[36] Perrier M, Busson M, Massasso G, et al. Tl-201(+)-labelled Prussian blue nanoparticles as contrast agents for SPE/CT scintigraphy[J]. Nanoscale, 2014, 6(22): 13425-13429.
[37] Mukherjee S, Rao B R, Sreedhar B, et al. Copper Prussian blue analogue: investigation into multifunctional activities for biomedical applications[J]. Chemical Communications, 2015, 51(34): 7325-7328.
文章导航

/