专题论文

二硫化钼-硅异质结太阳电池的原位制备及器件模拟

  • 李圣浩 ,
  • 但易 ,
  • 沈辉
展开
  • 1. 中山大学太阳能系统研究所, 广州 510006;
    2. 顺德中山大学太阳能研究院, 顺德 528000
李圣浩,博士研究生,研究方向为太阳电池器件模拟、异质结太阳电池和二维材料,电子信箱:lishhao@mail2.sysu.edu.cn

收稿日期: 2015-08-18

  修回日期: 2015-12-20

  网络出版日期: 2016-02-04

基金资助

广州市产学研协同创新重大专项(201508010011);广东省科技计划项目(2011A060901016)

In-situ fabrication and device simulation of molybdenum disulfidesilicon heterojunction solar cell

  • LI Shenghao ,
  • DAN Yi ,
  • SHEN Hui
Expand
  • 1. Institute for Solar Energy Systems, Sun Yat-sen University, Guangzhou 510006, China;
    2. Institute for Solar Energy, Shunde Sun Yat-sen University, Shunde 528000, China

Received date: 2015-08-18

  Revised date: 2015-12-20

  Online published: 2016-02-04

摘要

二维材料与晶体硅形成的异质结太阳电池是当前太阳电池研究热点之一,大多数研究都集中在石墨烯和硅形成的肖特基结太阳电池。为改善器件的能带结构,本研究采用具有一定禁带宽度的n-MoS2二维半导体材料与p-Si 形成异质结太阳电池。通过实验研究了退火时间对MoS2材料合成的影响,并对MoS2-Si异质结的暗电流和光电流曲线进行测量和分析。通过异质结模拟软件wx-AMPS对MoS2-Si异质结结构进行效率计算和能带分析,探讨了薄膜厚度和载流子浓度对器件开路电压的影响。

本文引用格式

李圣浩 , 但易 , 沈辉 . 二硫化钼-硅异质结太阳电池的原位制备及器件模拟[J]. 科技导报, 2016 , 34(2) : 39 -42 . DOI: 10.3981/j.issn.1000-7857.2016.2.004

Abstract

Heterojunction solar cells formed by two-dimensional materials and crystalline silicon are one of the research highlights in the field of solar cells. Most researches focus on the graphene-silicon Schottky junction solar cells. To refine the band-gap structure of these devices, we have fabricated the two-dimensional semiconductor material of n-MoS2, which has a band-gap, on the surface of p-Si to form heterojunction solar cells. Our experiment has revealed the effect of annealing time on the synthesis of MoS2. Dark and light current-voltage curves of MoS2-Si heterojunction are measured and discussed. The heterostructure simulation software wx-AMPS is applied for the efficiency calculation and the energy band analysis. The effects of MoS2 thin film thickness and carrier concentration on the open-circuit voltage are studied.

参考文献

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[2] Brus V V, Gluba M A, Zhang X, et al. Stability of graphene-silicon heterostructure solar cells[J]. Physica Status Solidi (a), 2014, 211(4): 843-847.
[3] Cui T, Lü R, Huang Z H, et al. Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping[J]. Journal of Materials Chemistry A, 2013, 1(18): 5736-5740.
[4] Fan G, Zhu H, Wang K, et al. Graphene/silicon nanowire schottky junction for enhanced light harvesting[J]. ACS Applied Materials and Interfaces, 2011, 3(3): 721-725.
[5] Li X, Fan L, Li Z, et al. Boron doping of graphene for graphene-silicon p-n junction solar cells[J]. Advanced Energy Materials, 2012, 2(4): 425-429.
[6] Liu X, Zhang X W, Yin Z G, et al. Enhanced efficiency of graphenesilicon schottky junction solar cells by doping with Au nanoparticles[J]. Applied Physics Letters, 2014, 105(18): 183901.
[7] Miao X, Tongay S, Petterson M K, et al. High efficiency graphene solar cells by chemical doping[J]. Nano Letters, 2012, 12(6): 2745-2750.
[8] Yang L, Yu X, Hu W, et al. An 8.68% efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts[J]. ACS Applied Materials and Interfaces, 2015, 7(7): 4135-4141.
[9] Song Y, Li X, Mackin C, et al. Role of interfacial oxide in highefficiency graphene-silicon schottky barrier solar cells[J]. Nano Letters, 2015, 15(3): 2104-2110.
[10] Jiao K, Duan C, Wu X, et al. The role of MoS2 as an interfacial layer in graphene/silicon solar cells[J]. Physical Chemistry Chemical Physics, 2015, 17(12): 8182-8186.
[11] Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new directgap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805.
[12] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.
[13] Zhao G, Hou J, Wu Y, et al. Preparation of 2d MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation[J]. Advanced Optical Materials, 2015, 3(7): 937-942.
[14] Ohashi T, Suda K, Ishihara S, et al. Multi-layered MoS2 film formed by high-temperature sputtering for enhancement-mode nMOSFETs[J]. Japanese Journal of Applied Physics, 2015, 54(4S): 04DN08.
[15] Li H M, Lee D, Qu D, et al. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide[J]. Nature Communications, 2015, 6: 6564.
[16] Miao J, Hu W, Jing Y, et al. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays[J]. Small, 2015, 11(20): 2392-2398.
[17] Lu C P, Li G, Mao J, et al. Bandgap, mid-gap states, and gating effects in MoS2[J]. Nano Letters, 2014, 14(8): 4628-4633.
[18] Lee C H, Lee G H, van der Zande A M, et al. Atomically thin p-n junctions with van der waals heterointerfaces[J]. Nature Nanotechnology, 2014, 9(9): 676-681.
[19] Cheng R, Li D, Zhou H, et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes [J]. Nano Letters, 2014, 14(10): 5590-5597.
[20] Tosun M, Fu D, Desai S B, et al. MoS2 heterojunctions by thickness modulation[J]. Scientific Reports, 2015, 5: 10990.
[21] Shanmugam M, Durcan C A, Yu B. Layered semiconductor molybdenum disulfide nanomembrane based schottky-barrier solar cells[J]. Nanoscale, 2012, 4(23): 7399-7405.
[22] Lee E W, Ma L, Nath D N, et al. Growth and electrical characterization of two-dimensional layered MoS2/SiC heterojunctions[J]. Applied Physics Letters, 2014, 105(20): 203504.
[23] Lopez-Sanchez O, Alarcon Llado E, Koman V, et al. Light generation and harvesting in a van der waals heterostructure[J]. ACS Nano, 2014, 8(3): 3042-3048.
[24] Ma X, Shi M. Thermal evaporation deposition of few-layer MoS2 films [J]. Nano-Micro Letters, 2013, 5(2): 135-139.
[25] Tan L K, Liu B, Teng J H, et al. Atomic layer deposition of a MoS2 film[J]. Nanoscale, 2014, 6(18): 10584-10588.
[26] Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17): 2320-2325.
[27] Muratore C, Hu J J, Wang B, et al. Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition[J]. Applied Physics Letters, 2014, 104(26): 261604.
[28] Zhan Y, Liu Z, Najmaei S, et al. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate[J]. Small, 2012, 8(7): 966-971.
[29] Liu K K, Zhang W, Lee Y H, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates[J]. Nano Letters, 2012, 12(3): 1538-1544.
[30] Lin Y C, Zhang W J, Huang J K, et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization[J]. Nanoscale, 2012, 4(20): 6637-6641.
[31] Tao J, Chai J, Lu X, et al. Growth of wafer-scale MoS2 monolayer by magnetron sputtering[J]. Nanoscale, 2015, 7(6): 2497-2503.
[32] Qiao L, Wang P, Chai L, et al. Influence of the incident flux angles on the structures and properties of magnetron sputtered MoS2 films[J]. Journal of Physics D: Applied Physics, 2015, 48(17): 175304.
[33] Liu H, Ansah Antwi K K, Ying J, et al. Towards large area and continuous MoS2 atomic layers via vapor-phase growth: Thermal vapor sulfurization[J]. Nanotechnology, 2014, 25(40): 405702.
[34] Hao L, Liu Y, Gao W, et al. Electrical and photovoltaic characteristics of MoS2/Si p-n junctions[J]. Journal of Applied Physics, 2015, 117 (11): 114502.
[35] Wang L, Jie J, Shao Z, et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors[J]. Advanced Functional Materials, 2015, 25(19): 2910-2919.
[36] Li Y, Xu C Y, Wang J Y, et al. Photodiode-like behavior and excellent photoresponse of vertical Si/monolayer MoS2 heterostructures [J]. Scientific Reports, 2014, 4: 7186.
[37] Tsai M L, Su S H, Chang J K, et al. Monolayer MoS2 heterojunction solar cells[J]. ACS Nano, 2014, 8(8): 8317-8322.
[38] Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2011, 11(12): 5111-5116.
[39] Kim I S, Sangwan V K, Jariwala D, et al. Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2[J]. Acs Nano, 2014, 8(10): 10551-10558.
[40] Yim C, O'Brien M, McEvoy N, et al. Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry[J]. Applied Physics Letters, 2014, 104(10): 103114.
文章导航

/