[1] 尹开锯, 李聪, 邱绍宇, 等. 核废料包装材料研究现状[J]. 核动力工程, 2007, 28(2): 76-80. Yin Kaiju, Li Cong, Qiu Shaoyu, et al. The Status of nuclear waste packing material research[J]. Nuclear Power Engineering, 2007, 28(2): 76-80.
[2] 王驹, 陈伟明, 苏锐, 等. 我国高放废物地质处置库场址筛选总体技术思路探讨[J]. 世界核地质科学, 2011, 28(1): 45-51. Wang Ju, Chen Weiming, Su Rui, et la. The discussion about China's high-level radioactive waste geological disposal repository site selection [J]. The World Nuclear Geological Science, 2011, 28(1): 45-51.
[3] Féron D, Crusset D, Gras J M. Corrosion issues in nuclear waste disposal [J]. Journal of Nuclear Materials, 2008, 379(1-3): 16-23.
[4] 王驹,张铁岭. 国际放射性废物地质处置十年进展[J]. 国际进展, 2003 (7): 476-480. Wang Ju, Zhang Tieling. Ten years progress of the radioactive waste disposal[J]. The International Progress, 2003(7): 476-480.
[5] Kursten B, Smailos E, Azkarate I, et al. COBECOMA, state-of-the-art document on the corrosion behaviour of container materials[R]. Luxemburg: European Commission Final Report, 2004.
[6] Martínez-Esparza A, Kursten B, Marx G, et al. Corrosion evaluation of metallic materials for long-lived HLW/spent fuel disposal containers [M]. Forschungszentrum Karlsruhe: Technik und Umwelt, 1997.
[7] 陈璋如, 阂茂中. 对我国高放废物处置库系统的类似物研究[R]. 北京:核工业北京地质研究院, 2004. Chen Zhangru, He Maozhong. The research of our country analogue for high level radioactive waste disposal system[R]. Beijing: Nuclear Industry Geological Research Institute in Beijing, 2004.
[8] 王驹, 徐国庆. 中国高放废物深地质处置研究[R]. 北京:核工业北京地质研究院, 1998. Wang Ju, Xu Guoqing. The research of deep geological disposal of high-level radioactive waste in China[R]. Beijing: Nuclear Industry Geological Research Institute in Beijing, 1998.
[9] 李亚萍, 许建东, 于红梅. 甘肃北山花岗岩裂隙几何学特征研究及岩石质量初探[J]. 地震地质, 2006, 28(1): 129-138. Li Yaping, Xu Jiandong, Yu Meihong. The research of Gansu beishan granite fracture geometry features and rock quality[J]. Seismic Geology, 2006, 28(1): 129-138.
[10] Hedin A. Long-term safety for KBS-3 repositories at Forsmark and Laxemar-A first evaluation: Main report of the SR-Can project[R]. Stockholm (Sweden): Swedish Nuclear Fuel and Waste Management Co, 2006.
[11] 阳靖峰. 高放废物地质处置环境下金属处置罐材料的腐蚀行为[D]. 北京: 中国科学院, 2011. Yang Jingfeng. The corrosion behavior of disposal material under the environment of high-level radioactive waste[D]. Beijing: Chinese Academyof Sciences, 2011.
[12] Andresen P L, Gordon G M, Lu S C. The stress-corrosion-cracking model for high-level radioactive-waste packages[J]. JOM, 2005, 57(1): 27-30.
[13] Kursten B, Druyts F, Macdonald D D, et al. Review of corrosion studies of metallic barrier in geological disposal conditions with respect to Belgian Supercontainer concept[J]. Corrosion Engineering, Science and Technology, 2011, 46(2): 91-97.
[14] Wickham S. Evolution of the near-field of the ONDRAF/NIRAS repository concept for category wastes[R]. Belgium: ONDRAF/NIRAS, 2008.
[15] King F, Ahonen L, Taxen C, et al. Copper corrosion under expected conditions in a deep geologic repository[R]. Stockholm (Sweden): Swedish Nuclear Fuel and Waste Management Co, 2001.
[16] Gras J M. Life prediction for HLW containers-issues related to longterm extrapolation of corrosion resistance[J]. Comptes Rendus Physique, 2002, 3(7): 891-902.
[17] Kosec T, Qin Z, Chen J, et al. Copper corrosion in bentonite/saline groundwater solution: Effects of solution and bentonite chemistry[J]. Corrosion Science, 2015, 90: 248-258.
[18] Syrett B C. The mechanism of accelerated corrosion of copper-nickelalloys in sulfide polluted seawater[J]. Corrosion Science, 1981, 21: 187-209.
[19] Wersin P, Spahiu K, Bruno J. Kinetic modelling of bentonite-canister interaction. Long-term predictions of copper canister corrosion under oxic and anoxic conditions[R]. Stockholm (Sweden), Swedish Nuclear Fuel and Waste Management Co, 1994.
[20] Swedish Corrosion Institute. The corrosion resistance of a copper canister for spent nuclear fuel-follow up[R]. Sweden: Swedish Corrosion Institute, SKBF/KBS TR 83-24, 1983.
[21] Werme L, Sellin P, Kjellbert N. Copper canisters for nuclear high level waste disposal: Corrosion aspects, Swedish nuclear fuel and waste management company technical report[R]. Stockholm(Sweden): Swedish Nuclear Fuel and Waste Management Co, 1992.
[22] Raiko, H. & Salo, J.P. Design report of the disposal canister for twelve fuel assemblies[R]. Helsinki: POSIVA Report, 1999.
[23] Rosborg B, Kosec T, Kranjc A, et al. Electrochemical impedance spectroscopy of pure copper exposed in bentonite under oxic conditions [J]. Electrochimica Acta, 2011, 56(23): 7862-7870.
[24] Sharifi-Asl S, Macdonald D D. Investigation of the kinetics and mechanism of the hydrogen evolution reaction on copper[J]. Journal of the Electrochemical Society, 2013, 160(6): H382-H391.
[25] Ling Y, Taylor M L, Sharifiasl S, et al. The semiconducting properties and impedance analysis of passive films on copper in anoxic sulfidecontaining solutions from the viewpoint of the point defect model[J]. ECS Transactions, 2013, 50(31): 53-67.
[26] Macdonald D D. The history of the point defect model for the passive state: A brief review of film growth aspects[J]. Electrochimica Acta, 2011, 56: 1761-1772.
[27] Asl S S. Corrosion issues in high-level nuclear waste containers[D]. Pennsylvania: Department of Materials Science and Engineering, the Pennsylvania State University, 2013.
[28] Ai J, Chen Y, Urquidi-Macdonald M, et al. Electrochemical impedance spectroscopic study of passive zirconium II. Hightemperature, hydrogenated aqueous solutions[J]. Journal of The Electrochemical Society, 2007, 154(1): C52-C59.
[29] Smith J M, Wren J C, Odziemkowski M, et al. The electrochemical response of preoxidized copper in aqueous sulfide solutions[J]. Journal of the Electrochemical Society, 2007, 154: C431-C438.
[30] Féron D, Kursten B, Druyts F. Sulphurassisted corrosion nuclear disposal systems[M]. Londen: Maney Publishing, 2008: 109-123.
[31] Smith J, Qin Z, King F, et al. Sulfide film formation on copper under electrochemical and natural corrosion conditions[J]. Corrosion, 2007, 63(2): 135-144.
[32] Mao F, Dong C, Sharifi-Asl S, et al. Passivity breakdown on copper: Influence of chloride ion[J]. Electrochimica Acta, 2014, 144: 391-399.
[33] Macdonald D D, Sharifiasl S. Is copper immune when in contact with water and aqueous solutions: Phase I[R]. Stockholm(Sweden):Swedish Radiation Safety Authourity, 2011.
[34] Hilden J, Laitinen T, Maekelae K, et al. Surface films and corrosion of copper[R]. Stockholm (Sweden): Swedish Nuclear Power Inspectorate, 1999.
[35] Chen J, Qin Z, Shoesmith D W. Copper corrosion in aqueous sulfide solutions under nuclear waste repository conditions[C]//MRS Proceedings. Oxford, UK: Cambridge University Press, 2012, 1475: 465-470.
[36] Martino T, Partovi-Nia R, Chen J, et al. Mechanisms of film growth on copper in aqueous solutions containing sulphide and chloride under voltammetric conditions[J]. Electrochimica Acta, 2014, 127: 439-447.
[37] Chen J, Qin Z, Shoesmith D W. Kinetics of corrosion film growth on copper in neutral chloride solutions containing small concentrations of sulfide[J]. Journal of the Electrochemical Society, 2010, 157(10): C338-C345.
[38] Chen J, Qin Z, Shoesmith D W. Long-term corrosion of copper in a dilute anaerobic sulfide solution[J]. Electrochimica Acta, 2011, 56(23): 7854-7861.
[39] Betova I, Beverskog B, Bojinov M, et al. Corrosion of copper in simulated nuclear waste repository conditions[J]. Electrochemical & Solid State Letters, 2003, 6(4): B19-B22.
[40] Dechialvo M R G, Arvia A J. The electrochemical behaviour of copper in alkaline solutions containing sodium sulphide[J]. Journal of Applied Electrochemistry, 1985, 15(5): 685-696.
[41] Chen J, Qin Z, Shoesmith D W. Rate controlling reactions for copper corrosion in anaerobic aqueous sulphide solutions[J]. Corrosion Engineering Science & Technology, 2011, 46(2): 138-141.
[42] Johnson L H, King F. Canister options for the disposal of spent fuel [R]. Nagra: Technical Report NTB 02-11, 2003.
[43] Rosborg B, Werme L. The Swedish nuclear waste program and the long-term corrosion behaviour of copper[J]. Journal of Nuclear Materials, 2008, 379: 142-153.
[44] King F, Kolar M. Mechanistic modelling of the corrosion behaviour of copper nuclear fuel waste containers [R]. Pinawa, Manitoba, Canada: Atomic Energy of Canada Ltd., 1996.