综述文章

考虑应力干扰的页岩储层裂缝穿透准则

  • 田冷 ,
  • 肖聪 ,
  • 刘明进 ,
  • 顾岱鸿 ,
  • 李翔龙 ,
  • 宋广宇 ,
  • 丁道权
展开
  • 1. 中国石油大学(北京)石油工程学院, 北京 102249;
    2. 西南石油大学地球科学与技术学院, 成都 610500
田冷,副教授,研究方向为非常规油气田开发,电子信箱:tianleng2008@126.com;肖聪(共同第一作者),硕士研究生,研究方向为非常规油气渗流理论,电子信箱:18810907235@163.com

收稿日期: 2015-03-30

  修回日期: 2015-07-10

  网络出版日期: 2016-02-04

基金资助

国家自然科学基金项目(51024197)

A crossing criterion of hydraulic fracture in shale gas reservoir with consideration of stress interference

  • TIAN Leng ,
  • XIAO Cong ,
  • LIU Mingjin ,
  • GU Daihong ,
  • LI Xianglong ,
  • SONG Guangyu ,
  • DING Daoquan
Expand
  • 1. Petroleum Engineering College, China University of Petroleum, Beijing 102249, China;
    2. School of Geoscience and Technology, Southwest University of Petroleum, Chengdu 610500, China

Received date: 2015-03-30

  Revised date: 2015-07-10

  Online published: 2016-02-04

摘要

根据页岩储层多裂缝应力干扰效应形成机理,建立了考虑水平有效地应力、裂缝尖端集中应力以及多缝干扰应力影响的页岩储层裂缝穿透准则。模型分析表明:考虑多缝应力干扰效应影响,压裂缝穿过天然裂缝的能力减弱,分段多簇压裂更有利于在页岩储藏中形成复杂缝网结构。裂缝越长,裂缝间距越小,天然裂缝分布位置越靠近中间裂缝,缝内净压力越大,导致裂缝间的干扰应力越大。随着压裂缝与天然缝间逼近角的减小,在一定应力比和裂缝内摩擦系数范围内,压裂缝穿过天然裂缝能力减弱,超过一定范围后,压裂缝穿透天然裂缝的能力增强。高应力比条件,裂缝穿透能力基本不受逼近角影响。

本文引用格式

田冷 , 肖聪 , 刘明进 , 顾岱鸿 , 李翔龙 , 宋广宇 , 丁道权 . 考虑应力干扰的页岩储层裂缝穿透准则[J]. 科技导报, 2016 , 34(2) : 167 -172 . DOI: 10.3981/j.issn.1000-7857.2016.2.027

Abstract

Based on the formation mechanisms of stress interference of multi-fractures induced by network fracturing in shale gas reservoirs, this paper establishes a crossing criterion with consideration of remote stress, stress intensity near the tip of fracture and stress interference of multi-fractures. The results of model analysis illustrate that the ability of hydraulic fractures to cross natural fractures decreases under impact of stress interference of multi-fractures; Meanwhile, the net fracture pressure was higher when the fracture was longer, the distance between fractures was shorter, and the natural fracture was closer to the intermediate fracture, leading to larger interference stress between fractures. With decrease of the intersection angle between the hydraulic fractures and natural fractures, the ability of the former to cross the latter decreased within a certain range of stress ratio and friction coefficient, and increased when the stress ratio and friction coefficient were beyond this range. The crossing ability is not affected by the intersection angle under high stress ratios. These results may provide references for practical fracturing stimulation of shale gas reservoirs.

参考文献

[1] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. Jia Chengzao, Zheng Min, Zhang Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136.
[2] 吴奇, 胥云, 王晓泉, 等. 非常规油气藏体积改造技术: 内涵、优化设计与实现[J]. 石油勘探与开发, 2012, 39(3): 352-358. Wu Qi, Xu Yun, Wang Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs: Connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39 (3): 352-358.
[3] 赵金洲, 李勇明, 王松, 等. 天然裂缝影响下的复杂压裂裂缝网络模拟 [J]. 天然气工业, 2014, 34(1): 68-73. Zhao Jinzhou, Li Yongming, Wang Song, et al. Simulation of a complex fracture network influenced by natural fractures[J]. Natural Gas Industry, 2014, 34(1): 68-73.
[4] Daneshy A A. Hydraulic fracture propagation in the presence of planes of weakness[C]. SPE European Spring Meeting, Amsterdam, Nether-lands, May29-30, 1974.
[5] Blanton T L. An experimental study of interaction between hydraulically induced and pre-existing fractures[R]. SPE 10847, Presented at the SPE Unconventional Gas Recovery Symposium, Pittsburgh, Pennsylvania, 1982.
[6] Warpinski N R, Teufel L W. Influence of geologic discontinuities on hydraulic fracture propagation (includes associated papers 17011 and 17074)[J]. Journal of Petroleum Technology, 1987, 39(2): 209-220.
[7] Renshaw C E, Pollard D D. An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic materials[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(3): 237-249.
[8] Gu H, Weng X. Criterion for fractures crossing frictional interfaces at nonorthogonal angles[R]. Salt Lake City: ARMA, 2010.
[9] 程万, 金衍, 陈勉, 等. 三维空间中水力裂缝穿透天然裂缝的判别准则 [J]. 石油勘探与开发, 2014, 41(3): 336-340. Cheng Wan, Jin Yan, Chen Mian, et al. A criterion for identifying hydraulic fractures crossing natural fracture in 3D space[J]. Petroleum Exploratioan and Development. 2014, 41(3): 336-340.
[10] 曾凡辉, 郭建春, 刘恒, 等. 致密砂岩气藏水平井分段压裂优化设计与应用[J]. 石油学报, 2013, 34(5): 959-968. Zeng Fanhui, Guo Jianchun, Liu Heng, et al. Optimization design and application of horizontal well staged fracturing in tight gas reservoirs [J]. Acta Petrolei Sinica, 2013, 34(5): 959-968.
[11] 陈作, 薛承瑾, 蒋廷学, 等. 页岩气井体积压裂技术在我国的应用建议[J]. 天然气工业, 2010, 30(10): 30-32. Chen Zuo, Xue Chengjin, Jiang Tingxue, et al. Proposals for the application of fracturing by stimulated reservoir volume (SRV) in shale gas wells in China[J]. Natural Gas Industry, 2010, 30(10): 30-32.
[12] Sneddon I N. The distribution of stress in the neighborhood of a crack in an elastic solid[C]//Proceedins of Royal Society, Series A, London: 1946, 187: 229-260.
[13] Crouch S L, Starfield A M. Boundary element methods in solid mechanics [M]. London: George Allen & Unwin Ltd, 1983.
[14] Olson J E, Arash D T. Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures[C]. SPE-119739-MS, SPE Hydraulic Fracturing Technology Conference, Woodlands, Texas, January 19-21, 2009.
文章导航

/