综述文章

TGF-β1在不同原因致心肌纤维化中的作用

  • 丁文金 ,
  • 敖碧凤 ,
  • 欧阳伟炜 ,
  • 苏胜发 ,
  • 卢冰
展开
  • 1. 贵州医科大学附属肿瘤医院肿瘤科;贵州省肿瘤医院肿瘤科, 贵阳 550004;
    2. 贵州医科大学肿瘤学教研室, 贵阳 550001
丁文金,硕士研究生,研究方向为胸部肿瘤基础与临床,电子信箱:383433889@qq.com

收稿日期: 2015-04-14

  修回日期: 2015-11-30

  网络出版日期: 2016-02-04

基金资助

贵州省科技计划项目(黔科合LH字[2014]7135)

Effects of TGF-β1 on myocardial fibrosis due to different reasons

  • DING Wenjin ,
  • AO Bifeng ,
  • OUYANG Weiwei ,
  • SU Shengfa ,
  • LU Bing
Expand
  • 1. Department of Oncology, Affiliated Hospital of Guizhou Medical University; Department of Oncology, Guizhou Cancer Hospital, Guiyang 550004, China;
    2. Teaching and Research Section of Oncology, Guiyang Medical University, Guiyang 550001, China

Received date: 2015-04-14

  Revised date: 2015-11-30

  Online published: 2016-02-04

摘要

心肌纤维化(myocardial fibrosis,MF)是一个复杂的病理过程,涉及多系统和多种不同机制,涉及多种细胞因子参与,其中转化生长因子β1(transforming growth factor-β1,TGF-β1)是重要的促纤维化因子,在病理情况下可通过经典的TGF-β1/smads 通路诱导心肌纤维化的发生发展,并最终导致心力衰竭。本文综述了高血压、糖尿病、射线损伤、病毒性心肌炎导致MF的相关机制,阐述了TGF-β1 信号通路在MF 中的作用。

本文引用格式

丁文金 , 敖碧凤 , 欧阳伟炜 , 苏胜发 , 卢冰 . TGF-β1在不同原因致心肌纤维化中的作用[J]. 科技导报, 2016 , 34(2) : 221 -225 . DOI: 10.3981/j.issn.1000-7857.2016.2.037

Abstract

Myocardial fibrosis (MF) is a complex pathological process, involving multiple systems, many different mechanisms and a variety of cytokines. Among those cytokines transforming growth factor β1 (TGF-β1) is an important pro-fibrotic factor. In the pathological conditions by classical TGF-β1/smads pathways myocardial fibrosis may be induced and developed eventually to heart failure. In this paper, high blood pressure, diabetes, radiation damage and viral myocarditis mechanisms leading to MF are reviewed, with a focus on the role of TGF-β1 signaling pathway in the MF, so as to provide more specific and effective targets for the prevention and treatment of myocardial fibrosis and heart failure due to different reasons.

参考文献

[1] Roger V L, Weston S A, RedfieId M M, et al.Trends in heart failure inci-dence and survival in a community based population[J]. The Journal of the American Medical Association, 2004, 292(3): 344-350.
[2] Fedak P W, Vema S, Weisel R D, et al. Cardiac remodeling and failure from molecules to man (Part II)[J]. Cardiovascular Pathology, 2005, 14 (2): 49-60.
[3] Xie J, Zhang Q, Zhu T, et al. Substrate stiffness-regulated matrix metallo-proteinase output in myocardial cells and cardiac fibroblasts: Implications for myocardial fibrosis[J]. Acta Biomaterialia, 2014, 10(6): 2463-2472.
[4] Baum J, Duffy H S. Fibroblasts and myofibroblasts: What are we talking about[J]. Journal of Cardiovascular Pharmacology, 2011, 57(4): 376-379.
[5] Krenning G, Zeisberg E M, Kalluri R. The origin of fibroblasts and mecha-nism of cardiac fibrosis[J]. Journal of Cellular Physiology, 2010, 225(3): 631-637.
[6] Massaous J, Hata A. TGF-beta signalling through the Smad pathway[J]. Trends in Cell Biology, 1997, 7(5): 187-192.
[7] Huang T, David L, Mendoza V, et al. TGF-beta signalling is mediated by two autonomously functioning TbetaRI: TbetaRII pairs[J]. Embo Journal, 2011, 30(7): 1263-1276.
[8] Ross S, Hill C S. How the Smads regulate transcription[J]. International Journal of Biochemistry & Cell Biology, 2008, 40(3): 383-408.
[9] Huntgeburth M, Tiemann K, Shahverdyan R, et al. Transforming growth factor β1 oppositely regulates the hypertrophic and contractile response to β-adrenergic stimulation in the heart[J]. PLoS One, 2011, 6(11): e26628.
[10] Gong K, Chen Y F, Li P, et al. Transforming growth factor-β inhibits myocardial PPARγ expression in pressure overload-induced cardiac fi-brosis and remodeling in mice[J]. Journal of Hypertension, 2011, 29(9): 1810-1819.
[11] Miyasato S K, Loeffler J, Shohet R, et al. Caveolin-1 modulates TGF-β1 signaling in cardiac remodeling[J]. Matrix Biology, 2011, 30(5-6): 318-329.
[12] Alvira C M, Guignabert C, Kim Y M, et al. Inhibition of transforming growth factor beta worsens elastin degradation in a murine model of Ka-wasaki disease[J]. American Journal of Pathology, 2011, 178(3): 1210-1220.
[13] Holm T M, Habashi J P, Doyle J J, et al. Noncanonical TGF beta signal-ing contributes to aortic aneurysm progression in Marfan syndrome mice [J]. Science, 2011, 332(6207): 358-361.
[14] Dean R G, Balding L C, Candido R, et al.Connective tissue growth fac-tor and cardiac fibrosis after myocardial infarction[J]. Journal of Histo-chemistry & Cytochemistry, 2005, 53(10): 1245-1256.
[15] 蔡辉, 常文静, 赵凌杰, 等. 丹参酮IIA对压力负荷增加大鼠心肌纤维化的影响[J]. 中华老年心脑血管病杂志志, 2013, 15(12): 1307-1311. Cai Hui, Chang Wenjing, Zhao Lingjie, et al. Effect of tanshinoneIIA on myocardial fibrosis in rats with pressure overload[J]. Chinese Journal of Geriatric Heart Brain and Vessel Diseases, 2013, 15(12): 1307-1311.
[16] Torun D, Ozelsancak R, Turan L, et al. The relationship between obesity and transforming growth factor beta on renal damage in essential hyper-tension[J]. International Heart Journal, 2007, 48(6): 733-741.
[17] Belmadani S, Bernal J, Wei C C, et a1. A thrombospondin-1 antagonist of transforming growth factor-beta activation blocks cardiomyopathy in rats with diabetes and elevated angiotensin II[J]. American Journal of Pa-thology, 2007, 171(3): 777-789.
[18] 张晓敏, 何继瑞. TGF-β1/Smads信号通路与糖尿病心肌纤维化[J].医学综述, 2012, 18(11): 1644-1646. Zhang Xiaomin, He Jirui. TGF-β1/Smads signaling pathway and diabet-ic myocardial fibrosis[J]. Medical Overview, 2012, 18(11): 1644-1646.
[19] 王国贤, 刘珊珊, 李飞, 等. α-硫辛酸对高糖环境下心肌成纤维细胞 TGF-β1/Smads信号通路的影响[J]. 江苏大学学报: 医学版, 2013, 23 (2): 108-111. Wang Guoxian, Liu Shanshan, Li Fei, et al. Effects of alpha-lipoic acid on TGF-β1/Smads signal transduction pathway in cardiac fibroblast un-der high glucose condition[J]. Journal of Jiangsu University: Medicine Edition, 2013, 23(2): 108-111.
[20] 解辉, 潘晓黎, 吴伟. 糖尿病心肌病心肌细胞纤维化的病理改变[J]. 中华老年心脑血管病杂志, 2008, 10(5): 374-376. Xie Hui, Pan Xiaoli, Wu Wei. The pathologic changes of myocardial fi-brosis in diabetes mellitus myocardiopathy[J]. Chinese Journal of Geriat-ric Heart Brain and Vessel Diseases, 2008, 10(5): 374-376.
[21] Tokudome T, Horio T, Yoshihara F, et al. Direct effects of high glucose and insulin on protein synthesis in cultured cardiac myocytes and DNA and collagen synthesis in cardiac fibroblasts[J]. Metabolism, 2004, 53 (6): 710-715.
[22] Boerma M, Bart C, Wondergem J. Effects of ionizing radiation on gene expression in cultured rat heart cells[J]. International Journal Radiation Biology, 2002, 78(3): 219-225.
[23] Boerma M, Schutte-Bart C I, Wedekind L E. Effects of multiple doses of ionizing radiation on cytokine expression in rat and human cells[J]. Inter-national Journal Radiation Biology, 2003, 79(11): 889-896.
[24] Boerma M, Wang J, Sridharan V, et al. Pharmacological induction of transforming growth factor-Beta1 in rat models enhances radiation inju-ry in the intestine and the heart[J]. PLoS One, 2013, 8(7): e70479.
[25] Gao S, Wu R, Zeng Y. Up-regulation of peroxisome proliferator-activat-ed receptor gamma in radiation-induced heart injury in rats[J]. Radia-tion and Environmental Biophysics, 2012, 51: 53-59.
[26] Gu J, Liu K, Li H. Astragalus saponin attenuates the expression of fibro-sis-related molecules in irradiated cardiac fibroblasts[J]. Acta Biochimi-ca et Biophysica Sinica, 2014, 46(6): 492-501.
[27] Jing L, Zhang J Z, Zhao L, et al. High-expression of transforming growth factor beta1 and phosphorylation of extracellular signal-regulated pro-tein kinase in vascular smooth muscle cells from aorta and renal arteri-oles of spontaneous hypertension rats[J]. Clinical and Experimental Hy-pertension, 2007, 29(2): 107-117.
[28] 华军益, 张召才, 蒋旭宏, 等. 内皮间充质转化与急性病毒性心肌炎早期心肌纤维化的关系[J]. 浙江大学学报: 医学版, 2012, 41(3): 298-304. Hua Junyi, Zhang Zhaocai, Jiang Xuhong, et al. Relationship between endothelial-to-mesenchymal transition and cardiac fibrosis in acute vi-ral myocarditis[J]. Journal of Zhejiang University: Medical sciences, 2012, 41(3): 298-304.
[29] Seeland U, Haeuseler C, Hinrichs R, et al.Myocardial fibrosis in trans-forming growth factor-beta(1) (TGF-beta1) transgenic mice is associated with inhibition of interstitial collagenase[J]. European Journal of Clinical Investigation, 2002, 32(5): 295-303.
[30] 江东华, 罗斌, 孔小平, 等.病毒性心肌炎猝死心肌MMP-9和TGF-β1 表达与心肌纤维化的关系[J]. 中国法医学杂志, 2008, 23(3): 163-165. Jiang Donghua, Luo Bin, Kong Xiaoping, et al. The expression of MMP-9, TGF-β1 in the cases of sudden death due to viral myocarditis and their relationship with myocardial fibrosis[J]. Chinese Journal of Foren-sic Medicine, 2008, 23(3): 163-165.
[31] 卢太苓, 路明, 刘运翠. 碱性成纤维细胞生长因子及转化生长因子β1 在病毒性心肌炎小鼠中的表达[J]. 临床儿科杂志, 2014, 32(7): 677-681. Lu Tailing, Lu Ming, Liu Yuncui. The expression of basic fibroblast growth factor and transforming growth factor βl in virus myocarditis in m ice[J]. The Journal of Clinical Pediatrics, 2014, 32(7): 677-681.
[32] 黄林枫, 文纯, 谢圭, 等. 曲尼司特对病毒性心肌炎小鼠心肌纤维化的作用[J]. 中国当代儿科杂志, 2014, 16(11): 1154-1161. Huang Linfeng, Wen Chun, Xie Gui, et al. Effect of tranilast on myocar-dial firosis in mice with viral myocarditis[J]. Chinese Journal of Contem-porary Pediatrics, 2014, 16(11): 1154-1161.
[33] Peng H, Carretero O A, Peterson E L, et al. Ac-SDKP inhibits transform-ing growth factor-beta1-induced differentiation of human cardiac fibro-blasts into myofibroblasts[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2010, 298(5): H1357-H1364.
[34] See F, Watanabe M, Kompa A R, et al. Early and delayed tranilast treat-ment reduces pathological fibrosis following myocardial infarction[J]. Heart, Lung and Circulation, 2013, 22(2): 122-132.
[35] Huang L F, Wen C, Xie G, et al. Effect of tranilast on myocardial fibrosis in mice with viral myocarditis[J]. Chinese Journal of Contemporary Pedi-atrics, 2014, 16(11): 1154-1161.
[36] Gu W L, Chen C X, Huang X Y, et al. The effect of angoroside C on pres-sure overload-induced ventricular remodeling in rats[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2015, 22 (7-8): 705-712.
[37] Zhan C Y, Tang J H, Zhou D X, et al. Effects of tanshinone IIA on the transforming growth factor β1/Smad signaling pathway in rat cardiac fi-broblasts[J]. Indian Journal of Pharmacology, 2014, 46(6): 633-638.
文章导航

/