综述文章

基于无网格法的钢筋混凝土梁静动力应力变形响应

  • 林杭 ,
  • 熊威 ,
  • 黄靓 ,
  • 柳群义
展开
  • 1. 中南大学资源与安全工程学院, 长沙 410083;
    2. 山西省交通科学研究院黄土地区公路建设与养护技术交通行业重点实验室, 太原 030006;
    3. 厦门理工学院土木工程与建筑学院, 厦门 361024;
    4. 中南大学地球科学与信息物理学院, 长沙 410083
林杭,副教授,研究方向为岩土工程理论和数值计算,电子信箱:linhangabc@126.com

收稿日期: 2015-03-18

  修回日期: 2015-06-12

  网络出版日期: 2016-02-04

基金资助

国家自然科学基金项目(51474249,51108175);黄土地区公路建设与养护技术交通行业重点实验室开放基金项目(KLTLR-Y13-14)

Stress and deformation response in reinforced concrete beam under static and dynamic loads based on meshless method

  • LIN Hang ,
  • XIONG Wei ,
  • HUANG Liang ,
  • LIU Qunyi
Expand
  • 1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China;
    2. Key Laboratory of Highway Construction & Maintenance Technology in Loess Region, Shanxi Transportation Research Institute, Taiyuan 030006, China;
    3. School of Civil Engineering & Architecture, Xiamen University of Technology, Xiamen 361024, China;
    4. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

Received date: 2015-03-18

  Revised date: 2015-06-12

  Online published: 2016-02-04

摘要

非线性大变形问题一直是钢筋混凝土梁数值分析中的难点,有限元方法中的网格畸变会大大降低其求解精度,而无网格方法由于不受网格的束缚,能很好地处理钢筋混凝土的大变形问题。为准确求解非线性大变形问题,本研究发挥无网格法的优点,利用无网格法建立钢筋混凝土梁数值计算模型,对模型分别施加恒定静荷载和动荷载,以探讨无网格伽辽金算法求解情况下钢筋混凝土梁的应力变形情况及破坏模式。结果表明,动、静加载下,梁最大应力值随着加载的变化而呈现不同的变化趋势,钢筋混凝土梁的应力变形均符合实际规律,无网格法可以用于解决钢筋混凝土梁的大变形求解问题。

本文引用格式

林杭 , 熊威 , 黄靓 , 柳群义 . 基于无网格法的钢筋混凝土梁静动力应力变形响应[J]. 科技导报, 2016 , 34(2) : 260 -264 . DOI: 10.3981/j.issn.1000-7857.2016.2.044

Abstract

The nonlinear large deformation has always been a difficulty in the numerical analysis of reinforced concrete beams, and the mesh distortion will greatly reduce solution accuracy in the finite element method (FEM), while grid points in the meshless method are not constrained by the grids, so this method can well handle the nonlinear large deformation problem in reinforced concrete beams. To solve the problem of nonlinear large deformation accurately, we establish a numerical model of reinforced concrete beam on the basis of the meshless method, and the static and dynamic loads are applied on the model to analyze the stress, deformation and failure mode of the reinforced concrete beam. The results show that either under the static or dynamic loads, the maximum stress varies with the change of load, and the stress and deformation of the reinforced concrete beam are consistent with the actual law, demonstrating the meshless method can be used for the nonlinear large deformation problem.

参考文献

[1] 陈必光, 宋二祥, 程晓辉. 二维裂隙岩体渗流传热的离散裂隙网络模型数值计算方法[J]. 岩石力学与工程学报, 2014, (1): 43-51. Chen Biguang, Song Erxiang, Cheng Xiaohui. A numerical method for discrete fracture network model for flow and heat transfer in two-dimen-sional fractured rocks[J]. Chinese Journal of Rock Mechanics and Engi-neering, 2014, (1): 43-51.
[2] 荣冠, 王思敬, 王恩志, 等. 强降雨下元磨公路典型工程边坡稳定性研究[J]. 岩石力学与工程学报, 2008, 27(4): 704-711. Rong Guan, Wang Sijing, Wang Enzhi, et al. Stability analysis of yuan-mo highway slope under intensive rainfall[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4): 704-711.
[3] Lucy L B. A numerical approach to the testing of the fission hypothesis [J]. The astronomical journal, 1977, 82(1): 1013-1024.
[4] Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 18(3): 375-389.
[5] Nayroles B, Touzot G, Villon P. Generalizing the finite element method: Diffuse approximation and diffuse elements[J]. Computational Mechan-ics, 1992, 10(5): 307-318.
[6] Belytschko T, Lu Y Y, Gu L. Element free Galerkin methods[J]. Interna-tional Journal for Numerical Methods in Engineering, 1994, 37(2): 229-256.
[7] Belytschko T, Gu L, Lu Y Y. Fracture and crack growth by element free Galerkin methods[J]. Modelling and Simulation in Materials Sci-ence and Engineering, 2994, 2(3), doi:10.1088/0965-0393/2/3A/007.
[8] Chung H J, Belytschko T. An error estimate in the EFG method[J]. Computational Mechanics, 1998, 21(2): 91-100.
[9] Krysl P, Belytschko T. Analysis of thin shells by the element-free Galerkin method[J]. International Journal of Solids and Structures, 1996, 33(20): 3057-3080.
[10] Liu G R, Gu Y T. Coupling of element free Galerkin and hybrid boundary element methods using modified variational formulation[J]. Computational Mechanics, 2000, 26(2): 166-173.
[11] Du C. An element-free Galerkin method for simulation of stationary two-dimensional shallow water flows in rivers[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 182(1): 89-107.
[12] Zhang X, Lu M, Wegner J L. A 2-D meshless model for jointed rock structures[J]. International Journal for Numerical Methods in Engineer-ing, 2000, 47(10): 1649-1661.
[13] 寇晓东, 周维垣. 应用无单元法近似计算拱坝开裂[J]. 水利学报, 2000(10): 28-35. Kou Xiaodong, Zhou Weiyuan. The application of element-free meth-od to approximate calculation of arch dam crack propagation[J]. Jour-nal of Hydraulic Engineering, 2000(10): 28-35.
[14] 张伟星, 庞辉. 弹性地基板计算的无单元法[J]. 工程力学, 2000, 17 (3): 138-144. Zhang Weixing, Pang Hui. The element-free method for the bending problem of plates on elastic foundation[J]. Engineering Mechanics, 2000, 17(3): 138-144.
[15] 陈建, 吴林志, 杜善义. 采用无单元法计算含边沿裂纹功能梯度材料板的应力强度因子[J]. 工程力学, 2000, 17(5): 139-144. Chen Jian, Wu Linzhi, Du Shanyi. Evaluating sif of functionally grad-ed plate with an edge crack by element-free method[J]. Engineering Mechanics, 2000, 17(5): 139-144.
[16] 林杭, 熊威, 黄靓. 钢筋混凝土梁应力变形的有限元-无网格耦合分析[J]. 公路, 2015, 60(5): 34-38. Lin Hang, Xiong Wei, Huang Liang. Analysis for the stress and defor-mation of reinforced concrete beam based on the coupling finite ele-ment-meshless method[J]. Highway, 2015, 60(5): 34-38.
[17] 向强, 刘彤, 王汝恒. 爆炸荷载作用下钢筋混凝土梁的破坏模式研究 [J]. 长江大学学报: 自然科学版, 2011, 8(7): 89-91. Xiang Qiang, Liu Tong, Wang Ruheng. The failure modes of rein-forced concrete beam under explosion load[J]. Journal of Yangtze Uni-versity: Natural Science Edition, 2011, 8(7): 89-91.
文章导航

/