综述文章

基于SMC的交直流混合微电网接口换流器控制策略

  • 苏小玲 ,
  • 韩民晓 ,
  • Josep M. Guerrero ,
  • 赵鑫
展开
  • 1. 华北电力大学新能源电力系统国家重点实验室, 北京 102206;
    2. 奥尔堡大学能源技术系, 奥尔堡 9220
苏小玲,博士研究生,研究方向为分布式发电,微电网技术,电子信箱:elevensu@163.com

收稿日期: 2015-11-24

  修回日期: 2015-12-29

  网络出版日期: 2016-02-04

基金资助

中丹国际合作项目(2014DFG72620)

Control system for AC/DC hybrid microgrid interface convertor based on SMC

  • SU Xiaoling ,
  • HAN Minxiao ,
  • Josep M. Guerrero ,
  • ZHAO Xin
Expand
  • 1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China;
    2. Institute of Energy Technology, Aalborg University, Aalborg 9220, Denmark

Received date: 2015-11-24

  Revised date: 2015-12-29

  Online published: 2016-02-04

摘要

根据交直流混合微电网拓扑和并网运行特点,建立了接口换流器的数学模型,设计了基于滑模控制(sliding-mode con-trol, SMC)的接口换流器控制系统,并通过设计趋近律规定了滑模控制过程中系统在正常运动阶段的状态轨迹,保证滑模控制的品质。为证明控制系统在实际应用中的可行性,在dSPACE 1006 平台上建立了实验模型。仿真和实验结果表明,该控制系统可以提高接口换流器在不确定和非线性条件下的鲁棒性和快速响应性,保证微电网稳定运行。

本文引用格式

苏小玲 , 韩民晓 , Josep M. Guerrero , 赵鑫 . 基于SMC的交直流混合微电网接口换流器控制策略[J]. 科技导报, 2016 , 34(2) : 299 -304 . DOI: 10.3981/j.issn.1000-7857.2016.2.050

Abstract

This paper first analyzes the AC/DC hybrid microgrid operating characteristics and the mathematical model of the interface convertor according to the operation mode. Then it develops a control system for the interface convertor based on sliding-mode control (SMC). A reaching law is designed to ensure the performance of this control system. An experimental setup is developed based on dSPACE 1006. Simulation and experimental results illustrate that the control system is insensitive to parametric uncertainty or external disturbances. The fast dynamic response and robust control performance of the interface convertor can ensure the stable operation of the microgrid.

参考文献

[1] Vovos P, Kiprakis A, Wallace A, et al. Centralized and distributed voltage control: Impact on distributed generation penetration[J]. IEEE Transactions on Power Systems, 2007, 22 (1): 476-483.
[2] 苏小玲, 韩民晓, 孙海. 基于自适应全局滑模控制的微电网稳定控制策略[J]. 电机工程学报, 2014, 34(31): 5534-5541. Su Xiaoling, Han Minxiao, Sun Hai. Stability control strategy for microgrid based on adaptive total sliding-mode control[J]. Proceedings of the CSEE, 2014, 34(31): 5534-5541.
[3] Shafiee Q, Guerrero J M. Vasquez J C. Distributed secondary control for islanded microgrids-A novel approach[J]. IEEE Transactions on Power Electronics, 2014, 29(2): 1018-1031.
[4] Eghtedarpour N, Farjah E. Power control and management in a hybrid AC/DC microgrid[J]. IEEE Transations on Smart Grid, 2014, 5(3): 1494-1505.
[5] 陆晓楠, 孙凯, Josep Guerrero, 等. 适用于交直流混合微电网的直流分层控制系统[J]. 电工技术学报, 2013, 28(4): 35-42. Lu Xiaonan, Su Kai, Josep Guerrero, et al. DC hierarchical control system for microgrid applications[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 35-42.
[6] Liu Xiong, Wang Peng, Loh P C. A hybrid AC/DC microgrid and its coordination control[J]. IEEE Transactions on Smart Grid, 2011, 2(2): 1-9.
[7] Akbari M, Golkar M A, Tafreshi S M M. Voltage control of a hybrid AC/ DC microgrid in grid-connected operation mode[C]//Innovative Smart Grid Technologies-India (ISGT India), 2011 IEEE PES. IEEE, 2011: 358-362.
[8] Akbari M, Golkar M A, Tafreshi S M M. Firefly algorithm-based voltage and frequency control of a hybrid AC-DC microgrid[C]// Electrical Power Distribution Networks (EPDC), 2012 Proceedings of 17th Conference on. IEEE, 2012: 1-7.
[9] 帅定新, 谢运祥, 王晓刚. 三相PWM整流器混合非线性控制研究[J]. 中国电机工程学报, 2009, 29(12): 30-35. Shuai Dingxin, Xie Yunxiang, Wang Xiaogang. Novel hybrid nonlinear control method for three-phase PWM rectifier[J]. Proceedings of the CSEE, 2009, 29(12): 30-35.
[10] 张明锐, 黎娜, 杜志超, 等. 基于小信号模型的微网控制参数选择与稳定性分析[J]. 中国电机工程学报, 2012, 32(25): 9-19. Zhang Mingrui, Li Na, Du Zhichao, et al. Control parameter selection and stability analysis of microgrid based on small-signal model[J]. Proceedings of the CSEE, 2012, 32(25): 9-19.
[11] Moharana A, Dash P K. Input-output linearization and robust sliding mode controller for the VSC-HVDC transmission link[J]. IEEE Transactions on Power Delivery, 2010, 25(1): 1952-1961.
[12] Utkin V. Variable structure system with sliding modes[J]. IEEE Transactions on Automatic and Control, 1979, 22(2): 212-222.
[13] Dai M, Marwali M N, Jin W J, et al. A three-phase four-wire inverter control technique for a single distributed generation unit in island mode[J]. IEEE Transactions on Power Electronics, 2008, 23(1): 322-331.
[14] 赵葵银. PWM 整流器的模糊滑模变结构控制[J]. 电工技术学报, 2006, 21(7): 49-53. Zhao Kuiyin. PWM rectifier with fuzzy sliding mode variable structure control[J]. Transactions of China Electro Technical Society, 2006, 21 (7): 49-53.
[15] Wai R J, Lin C Y, Huang Y C, et al. Design of high-performance stand-alone and grid-connected inverter for distributed generation applications[J]. IEEE Transactions on, Industrial Electronics, 2013, 60 (4): 1542-1555.
[16] 高为炳, 程勉. 变结构控制系统的品质控制[J]. 控制与决策, 1989 (4): 1-6. Gao Weibing, Chen Mian. Quality control of variable structure control systems[J]. Control and Decision, 1989(4): 1-6.
[17] 张兴, 张崇巍. PWM 整流器及其控制[M]. 北京: 机械工业出版社, 2012. Zhang Xing, Zhang Chongwei. PWM converter and its control[M]. Beijing: China Machine Press, 2012.
文章导航

/