小麦是中国最主要的粮食作物,主要分布在秦岭、淮河以北,长城以南,包括河南、河北、山东、陕西、山西、江苏、四川、安徽、湖北、黑龙江、新疆、甘肃、内蒙和西藏等省区。常年播种面积2400多万hm2,产量1.2亿t以上。但是目前随着全球气候变暖、水肥施用量的逐增以及栽培密度的加大等,小麦病害的发生和流行逐年加重,严重影响了小麦产量和粮食安全生产[1]。
[1] 王晓宇, 冯伟, 王永华, 等. 小麦白粉病严重度与植株生理性状及产量损失的关系[J]. 麦类作物学报, 2012, 32(6): 1192-1198.
[2] Zeller F, Kong L, Hartl L, et al. Chromosomal location of genes for re-sistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 7. gene Pm29 in line Pova[J]. Euphytica, 2002, 123(2): 187-194.
[3] Huang X Q, Röder M S. Molecular mapping of powdery mildew resis-tance genes in wheat: A review[J]. Euphytica, 2004, 137(2): 203-223.
[4] Miranda L M, Murphy J P, Leath S, et al. Pm34: A new powdery mil-dew resistance gene transferred from Aegilops tauschii Coss. to common wheat[J]. Theoretical and Applied Genetics, 2006, 113(8): 1497-1504.
[5] Miranda L M, Murphy J P, Marshall D S, et al. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat[J]. Theoretical and Applied Genet-ics, 2007, 114(8): 1451-1456.
[6] Blanco A, Gadaleta A, Cenci A, et al. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgi-dum var. dicoccoides in durum wheat[J]. Theoretical and Applied Genet-ics, 2008, 117(1): 135-140.
[7] PeruginiI L D, Murphy J P, Marshall D, et al. Pm37, a new broadly ef-fective powdery mildew resistance gene from Triticum timopheevii[J]. Theoretical and Applied Genetics, 2008, 116(3): 417-425.
[8] Luo P G, Luo H Y, Chang Z J, et al. Characterization and chromosom-al location of Pm40 in common wheat: A new gene for resistance to powdery mildew derived from Elytrigia intermedium[J]. Theoretical and Applied Genetics, 2009, 118(6): 1059-1064.
[9] Li G Q, Fang T L, Zhang H T, et al. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides) [J]. Theoretical and Applied Genetics, 2009, 119(3): 531-539.
[10] Wei H, Liu Z Z, Zhu J, et al. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides)[J]. Theoretical and Applied Genetics, 2009, 119(2): 223-230.
[11] He R L, Chang Z J, Yang Z J, et al. Inheritance and mapping of pow-dery mildew resistance gene Pm43 introgressed from Thinopyrum in-termedium into wheat[J]. Theoretical and Applied Genetics, 2009, 118 (6): 1173-1180.
[12] Li B C, Frederic C, Heng Y F, et al. Wheat centromeric retrotranspo-sons: The new ones take a major role in centromeric structure[J]. The Plant Journal, 2013, 73(6): 952-965.
[13] Mohler V, Bauer C, Schweizer G, et al. Pm50: A new powdery mildew resistance gene in common wheat derived from cultivated emmer[J]. Theoretical and Applied Genetics, 2013, 54(3): 259-263.
[14] Petersen S, Lyerly J, Woerhinfron, et al. Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat[J]. Theoretical and Applied Genetics, 2015, 128(2): 303-312.
[15] 董玉琛, 郑殿升. 中国小麦遗传资源[M]. 北京: 中国农业出版社, 2000: 129-193. Dong Yuchen, Zheng Diansheng. Genetic resources for wheat in China[J]. Beijing: China Agriculture Press, 2000: 129-193.
[16] 任天恒, 陈放, 张怀琼, 等. 小麦抗白粉病基因Pm21 的抑制基因[J]. 植物病理学报, 2012, 42(1): 57-64. Ren Tianheng, Chen Fang, Zhang Huaiqiong, et al. Genetic suppres-sion of the powdery mildew resistance gene Pm21 in common wheat[J]. Acta Phytopathologica Sinica, 2012, 42(1): 57-64.
[17] Bie T, Zhao R, Zhu S, et al. Development and characterization of marker MBH1 simultaneously tagging genes Pm21 and PmV confer-ring resistance to powdery mildew in wheat[J]. Molecular Breeding, 2015, 35(10): 1-8.