构建一种具有较多三角关系且聚类系数可调节的三角生长网络,利用计算机模拟,研究了网络拓扑结构改变对社会平衡动力学演化的影响。结果表明,当网络加边连接概率pa≥0.5,网络为稠密连接时,网络的统计性质与完全连接图类似,社会平衡的演化与初始状态无关,且当转变概率p≥1/2 时, 网络系统发生从非全友好态到全友好态的动力学相变;当连接概率pa<0.5,网络为稀疏连接时,网络的统计性质具有无标度网络的特性,社会平衡的演化呈现初值依赖性和动力学相变消失。
A network with a large number of triangular relations, whose cluster coefficient could be controlled, was constructed in this study. The local dynamics of social balance in the triangle-growing networks was studied through computer simulations. The results show that the statistical features of the networks are approximately the same as the complete graph when the adding-link probability pa≥0.5, and the evolution of the social balance is independent on the initial conditions; moreover, the system undergoes a dynamic phase transition when the transition probability p≥1/2. However, when the network is sparse, i.e. pa<0.5, the final state of the system depends on the initial state and the system does not experience the dynamic phase transition.
[1] Heider A F. Attitudes and cognitive organization[J]. The Journal of Psy-chology, 1946, 21(1): 107-112.
[2] Cartwright D, Harary F. Structural balance: A generalization of heider's theory[J]. Psychological Review, 1956, 63(5): 277-293.
[3] Leik R K, Meeker B F. Mathematical sociology[M]. New Jersey: Prentice-Hall, 1975.
[4] Bonacich P, Lu P. Introduction to mathematical sociology[M]. New Jersey: Princeton University Press, 2012.
[5] Hummon N P, Fararo T J. The emergence of computational sociology[J]. Journal of Mathematical Sociology 1995, 23(2-3): 79-87.
[6] Hummon N P, Doreian P. Some dynamics of social balance processes: bringing Heider back into balance theory[J]. Social Networks, 2003, 25 (1): 17-49.
[7] Antal T, Krapivsky P L, Redner S. Dynamics of social balance on networks[J]. Physical Review E, 2005, 72(3): 036121.
[8] Radicchi F, Vilone D, Meyer-Ortmanns H. Universality class of triad dy-namics on a triangular lattice[J]. Physical Review E, 2007, 75(2): 021118.
[9] Radicchi F, Vilone D, Yoon S, et al. Social balance as a satisfiability prob-lem of computer science[J]. Physical Review E, 2007, 75(2): 026106.
[10] Fan Pengyi, Wang Hui, Li Pei, et al. Analysis of opinion spreading in ho-mogeneous networks with signed relationships[J]. Journal of Statistical Mechanics: Theory and Experiment, 2012, 8(2012): P08003.
[11] 王春阳,孔祥木. 长程作用下Gauss 系统的临界温度[J]. 物理学报, 2005, 54(9): 4365-4369. Wang Chunyang, Kong Xiangmu. Critical temperature of the Gauss sys-tem under long-range interactions[J]. Acta Physica Sinica, 2005, 54(9): 4365-4369.
[12] Wang Chunyang, Kong Xiangmu. An attempt to introduce long-range in-teractions into small-world networks[J]. Modern Physics Letters B, 2010, 24(7): 671-679.
[13] 王春阳,孔祥木. 二维三角晶格上Gauss自旋模型的临界温度[J]. 曲阜师范大学学报, 2005, 31(3): 63-65. Wang Chunyang, Kong Xiangmu. Critical temperature of the Gaussian system on a trianglar lattice[J]. Journal of Qufu Normal University, 2005, 31(3): 63-65.
[14] Meng Qingkuan. Self-organized criticality in small-world networks based on the social balance dynamics[J]. Chinese Physics Letters, 2011, 28(11): 118901.
[15] Castellano C, Fortunato S, Loreto V. Statistical physics of social dynam-ics[J]. Reviews of Modern Physics 2009, 81(2): 591-646.
[16] Barabasi A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002, 74(1): 47-97
[17] Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Sci-ence, 1999, 286(5439): 509-512.
[18] Bollobas B. Degree sequences of random graphs[J]. Discrete Mathemat-ics, 1981, 33(1): 1-19.
[19] Chung Fan, Lu Linyuan. The diameter of sparse random graphs[J]. Ad-vances in Applied Mathematics, 2001, 26(4): 257-279.
[20] Wasserman S, Faust K. Social network analysis: methods and applica-tions[M]. Cambridge: Cambridge University, 1994.