研究论文

基于尺度化SMMI的神东矿区土壤湿度变化遥感分析

  • 刘英 ,
  • 吴立新 ,
  • 岳辉 ,
  • 马保东
展开
  • 1. 西安科技大学测绘科学与技术学院, 西安 710054;
    2. 中国矿业大学环境与测绘学院, 徐州 221116;
    3. 东北大学测绘遥感与数字矿山研究所, 沈阳 110004
刘英,讲师,研究方向为矿区环境遥感监测,电子信箱:liuying712100@163.com

收稿日期: 2015-05-07

  修回日期: 2015-08-26

  网络出版日期: 2016-02-26

基金资助

国家重点基础研究发展计划(973计划)项目(2011CB707102);国家自然科学基金青年科学基金项目(41401496);陕西省教育厅2014年科学研究计划项目(14JK1471);陕西省科技统筹创新工程项目(2011KTZB01-02-04);西安科技大学博士启动金项目(2014QDJ060);西安科技大学博士培育基金项目(201305)

Soil moisture monitoring in Shendong mining area based on scaled SMMI

  • LIU Ying ,
  • WU Lixin ,
  • YUE Hui ,
  • MA Baodong
Expand
  • 1. College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China;
    2. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China;
    3. Institute for Geoinformatics & Digital Mine Research, Northeastern University, Shenyang 110004, China

Received date: 2015-05-07

  Revised date: 2015-08-26

  Online published: 2016-02-26

摘要

为消除遥感数据时相差异的影响,在土壤湿度监测指数(SMMI)和尺度化归一化植被指数S-NDVI 的基础上,构建了尺度化土壤湿度监测指数S-SMMI。利用1989-2013 年神东矿区多时相TM/ETM+/OLI 及HJ-CCD 影像band3、band4 反射率数据,监测分析了神东矿区25 年来土壤湿度的时空变化特点及其与地表高程、NDVI 之间的关系。结果表明:神东矿区25 年来土壤湿度总体呈上升趋势,与矿区植被的改善成呈相关;土壤湿度和NDVI 的分布均受到了区域地形的影响,低高程区的土壤湿度与NDVI 对高程变化更为敏感;与土壤湿度为16%~32%时的NDVI 变化相比,土壤湿度小于15%时NDVI 变化更为敏感;而且,地势低洼处的人类活动对NDVI 的影响较大。

本文引用格式

刘英 , 吴立新 , 岳辉 , 马保东 . 基于尺度化SMMI的神东矿区土壤湿度变化遥感分析[J]. 科技导报, 2016 , 34(3) : 78 -84 . DOI: 10.3981/j.issn.1000-7857.2016.03.006

Abstract

In order to eliminate the influence of remote sensing images from several days, scaled SMMI (S-SMMI) is constructed based on soil moisture monitoring index (SMMI) and scaled NDVI (S-NDVI). Based on S-SMMI, the reflectance of band3 and band4, derived from multi-temporal TM/ETM+/OLI and HJ-CCD images between 1989 and 2013, is applied to monitoring the spatio-temporal features of soil moisture in the Shendong mining area. The relationship between soil moisture, elevation and NDVI in the Shendong mining area are also evaluated. The results indicate that the soil moisture condition has been improved for twenty-five years and there is a positive relationship between soil moisture and the improvement of vegetation coverage. The distributions of soil moisture and NDVI are influenced by elevation. Soil moisture and NDVI, in the area with low elevation, are more sensitive to the change of elevation. Compared with the change of NDVI with soil moisture between 16% and 32%, NDVI is more sensitive to the change of soil moisture when it is less than 15%. Moreover, vegetation in low-lying area is more easily influenced by human activities.

参考文献

[1] Gillies R R, Carlson T N. Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models[J]. Journal of Applied Meteorology, 1995, 34(4): 745-756.
[2] Han Y, Wang Y Q, Zhao Y S. Estimating soil moisture conditions of the greater changbai mountains by land surface temperature and NDVI[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48 (6): 2509-2515.
[3] Price J C. On the analysis of thermal infrared imagery: The limited utility of apparent thermal inertia[J]. Remote Sensing of Environment, 1985, 18(1): 59-73.
[4] 曹广真, 侯鹏, 范锦龙, 等. TM与MODIS植被供水指数反演及对比分 析[J]. 遥感技术与应用, 2010, 25(1): 63-68. Cao Guangzhen, Hou Peng, Fan Jinlong, et al. VSWI retrieved and compared between TM and MODIS[J]. Remote Sensing Technology and Application, 2010, 25(1): 63-68.
[5] Jackso R D, Idso S B, Reginato R J. Canopy temperature as a crop water stress indicator[J]. Water Resource Research, 1981, 17: 1133-1138.
[6] Gao Z Q, Gao W, Chang N B. Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM + images[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(3): 495-503.
[7] Patel N R, Parida B R, Venus V, et al. Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data[J]. Environmental Monitoring and Assessment, 2012, 184 (12): 7153-7163.
[8] 赵少华, 秦其明, 沈心一, 等. 微波遥感技术监测土壤湿度的研究[J]. 微波学报, 2010, 26(2): 90-96. Zhao Shaohua, Qin Qiming, Shen Xinyi, et al. Review of microwave remote sensing on soil moisture monitoring[J]. Journal of Microwaves, 2010, 26(2): 90-96.
[9] Ghulam A, Li Z L, Qin Q M, et al. Estimating crop water stress with ETM + NIR and SWIR data[J]. Agricultural and Forest Meteorology, 2008, 148(11): 1679-1695.
[10] 冯海霞, 秦其明, 李滨勇, 等. 基于SWIR-Red光谱特征空间的农田 干旱监测新方法[J]. 光谱学与光谱分析, 2011, 31(11): 3069-3073. Feng Haixia, Qin Qiming, Li Binyong, et al. The new method monitoring agricultural drought based on SWIR-Red spectrum feature space[J]. Spectroscopy and Spectral Analysis, 2011, 31(11): 3069-3073.
[11] 刘英, 吴立新, 马保东. 基于TM/ETM+光谱特征空间的土壤湿度遥 感监测[J]. 中国矿业大学学报, 2013, 42(2): 296-301. Liu Ying, Wu Lixin, Ma Baodong. Remote sensing monitoring of soil moisture on the basis of TM/ETM+ spectral space[J]. Journal of China University of Mining & Technology, 2013, 42(2): 296-301.
[12] Charou E, Stefouli M, Dimitrakopoulos D, et al. Using remote sensing to assess impact of mining activities on land and water resources[J]. Mine Water and the Environment, 2010, 29(1): 45-52.
[13] Zipper C E, Burger J A, Skousen J G, et al. Restoring forests and associated ecosystem services on appalachian coal surface mines[J]. Environmental Management, 2011, 47(5): 751-765.
[14] Zhang B D, Wu D, Zhang L, et al. Application of hyperspectral remote sensing for environment monitoring in mining areas[J]. Environmental Earth Sciences, 2012, 65(3): 649-658.
[15] 吴立新, 马保东, 刘善军. 基于SPOT卫星NDVI数据的神东矿区植被 覆盖动态变化分析[J]. 煤炭学报, 2009, 34(9): 1216-1222. Wu Lixin, Ma Baodong, Liu Shanjun. Analysis to vegetation coverage change in Shendong mining area with SPOT NDVI data[J]. Journal of China Coal Society, 2009, 34(9): 1216-1222.
[16] 马保东, 吴立新, 刘英, 等. 基于MODIS 的神东矿区土壤湿度变化监 测[J]. 科技导报, 2011, 29(35): 45-49. Ma Baodong, Wu Lixin, Liu Ying, et al. Soil moisture monitoring in Shendong mining area based on MODIS data[J]. Science & Technology Review, 2011, 29(35): 45-49.
[17] 刘英, 吴立新, 马保东, 等. 神东矿区土壤湿度遥感监测与双抛物线 型NDVI-Ts特征空间[J]. 科技导报, 2011, 29(35): 39-44. Liu Ying, Wu Lixin, Ma Baodong, et al. Soil moisture monitoring in Shendong mining area and bi-parabola NDVI-Ts space[J]. Science & Technology Review, 2011, 29(35): 39-44.
[18] 常鲁群, 卞正富. 基于DEM的矿区表层土壤含水率的变化分析——以神东矿区为例[J]. 金属矿山, 2008(11): 137-140. Chang Luqun, Bian Zhengfu. DEM-based analysis of the change of soil moisture content in mine surface layer: With Shendong mining area as the instance[J]. Metal Mine, 2008(11): 137-140.
[19] 卞正富, 雷少刚, 常鲁群, 等. 基于遥感影像的荒漠化矿区土壤含水 率的影响因素分析[J]. 煤炭学报, 2009, 34(4): 520-525. Bian Zhengfu, Lei Shaogang, Chang Luqun, et al. Affecting factors analysis of soil moisture for arid mining area based on TM images[J]. Journal of China Coal Society, 2009, 34(4): 520-525.
[20] Gillies R R, Carlson T N, Cui J, et al. A verification of the triangle'method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (NDVI) and surface radiant temperature[J]. International Journal of Remote Sensing, 1997, 18(5): 3145-3166.
[21] Gutman G, Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J]. International Journal of Remote Sensing, 1998, 19(8): 1533-1543.
[22] 李苗苗, 吴炳方, 颜长珍, 等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学, 2004, 26(4): 153-159. Li Miaomiao, Wu Bingfang, Yan Changzhen, et al. Estimation of vegetation fraction in the upper basin of miyun reservoir by remote sensing[J]. Resources Science, 2004, 26(4): 153-159.
文章导航

/