[1] Sanders R H. THE DARK MATTER PROBLEM:A Historical Perspec-tive[M]. New York:Cambridge University Press, 2010.
[2] Cho A. Universe's High-Def Baby Picture Confirms Standard Theory[J]. Science, 2013, 339:1513.
[3] Bertone G, Hooper D, Silk J. Particle Dark Matter:evidence candidates and constraints[J]. Physics Reports. 2005, 405:279-390.
[4] CERN. The accelerator complex[EB/OL].[2016-01-26]. http://home.cern/topics/large-hadron-collider.
[5] Bi X J, Yin P F, Zhou N. Looking for dark matter in colliders[J]. Phys-ics, 2015, 44(11):714-721.
[6] Chang J, Feng L,Guo JH. Detecting dark matter in space[J]. Physics, 2015, 44(11):707-713.
[7] Silk J, Olive K, Srednicki M. The photino, the sun, and high-energy neutrinos[J]. Phys Rev Lett, 1985, 55(2):257-259.
[8] Bertone G. The moment of truth for WIMP dark matter[J]. Nature, 2010, 468(7322):389-393.
[9] Adriani O, Barbarino G C, Bazilevskaya G A, et al. An anomalous posi-tron abundance in cosmic rays with energies 1.5-100 GeV[J]. Nature, 2009, 458:607-609.
[10] Adriani O, Barbarino G C, Bazilevskaya G A, et al. Cosmic-Ray Elec-tron Flux Measured by the PAMELA Experiment between 1 and 625 GeV[J]. Physical Review Letters, 2011, 106(201101):1-5.
[11] Ackermann M, Ajello M, Allafort A, et al. Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope[J]. Physical Review Letters, 2012, 108(011103):17.
[12] Accardo L, Aguilar M, Aisa D, et al. High statistics measurement of the positron fraction in primary cosmic rays of 0.5-500 GeV with the alpha magnetic spectrometer on the international space station[J]. Phys Rev Lett, 2014, 113(12):121101.
[13] 李强.中国暗物质粒子探测卫星启运酒泉——择机年底发射[EB/OL]. 2015-11-16. http://news.xinhuanet.com/info/2015-11/16/c_134819779.htm.
[14] Lewin J D, Smith P F. Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil[J]. Astroparticle Physics, 1996, 6(1):87-112.
[15] Kang K J, Cheng J P, Chen Y H, et al. Status and prospects of a deep underground laboratory in China[J]. Journal of Physics:Conference Series, 2010, 203(1):20-28.
[16] 程建平, 吴世勇, 岳骞, 等. 国际地下实验室发展综述[J]. 物理, 2011, 40(3):149-154.
[17] 刘仲华.日本加拿大2位科学家荣获2015年诺贝尔物理学奖[EB/OL]. 2015-10-16. http://news.163.com/15/1006/18/B58V33JD00014JB6.html#from=relevant#xwwzy_35_bottomnewskwd.
[18] 杨先武, 李胜蓝. 世界第二深埋隧道——锦屏山隧道贯通[EB/OL]. 2008-08-10[2015-11-25].http://scnews.newssc.org/system/2008/08/10/011024983.shtml.
[19] Wu Y C, Hao X Q, Yue Q, et al. Measurement of cosmic ray flux in the China JinPing underground laboratory[J]. Chinese Physics C, 2013, 37(8):45-49.
[20] Zeng Z, Su J, Ma H, et al. Environmental gamma background measure-ments in China Jinping Underg round Laboratory[J]. J Radioanal Nu-cl Ch, 2014, 301(2):443-450.
[21] Zhao W, Yue Q, Kang K J, et al. First results on low-mass WIMPs from the CDEX-1 experiment at the China Jinping underground labo-ratory[J]. Physical Review D, 2013, 88(5):1201-1205.
[22] Yue Q, Zhao W, Kang K J, et al. Limits on light weakly interacting massive particles from the CDEX-1 experiment with a p-type pointcontact germanium detector at the China Jinping Underground Labora-tory[J]. Physical Review D, 2014, 90(9):091701.
[23] Xiao M J, Xiao X, Zhao L, et al. First dark matter search results from the PandaX-I experiment[J]. Sci China Phys Mech, 2014, 57(11):2024-2030.
[24] JAINMIN LIA X J, et al. The second-phase development of the CJPL[J]. Physics Procedia, 2015, 61:576-585.
[25] Cushman P.C G, Mckinsey D. N., Robertson H., et al.. Snowmass CF1 Summary:WIMP Dark Matter Direct Detection[DB/OL]. arXiv:13108327v1, 2013, 8(2):395-410.
[26] Aalseth C E, Barbeau P S, Colaresi J, et al. CoGeNT:A search for low-mass dark matter using p-type point contact germanium detectors[J]. Physical Review D, 2013, 88(1):012002.
[27] Li H B, Liao H Y, Lin S T, et al. Limits on Spin-Independent Cou-plings of WIMP Dark Matter with a p-Type Point-Contact Germani-um Detector[J]. Physical Review Letters, 2013, 110(26):1-6.
[28] Zhao W, Yue Q, Li J. Progress in the China dark matter experiment (CDEX)[J]. Chinese Science Bulletin (Chinese Version), 2015, 60(25):2376-2386.
[29] Agnese R, Anderson A J, Asai M, et al. Search for Low-Mass Weakly Interacting Massive Particles Using Voltage-Assisted Calorimetric Ion-ization Detection in the SuperCDMS Experiment[J]. Physical Review Letters, 2014, 112(4):105-110.
[30] Armengaud E, Augier C, Benoit A, et al. First results of the EDEL-WEISS-II WIMP search using Ge cryogenic detectors with inter-leaved electrodes[J]. Physics Letters B, 2010, 687(4-5):294-298.
[31] Angloher G. A B., et al. Results on light dark matter particles with a low-threshold CRESST-II detector[DB/OL]. arXiv:150901515v1, 2015:1-8.
[32] Aprile E, Alfonsi M, Arisaka K, et al. Dark Matter Results from 225 Live Days of XENON100 Data[J]. Physical Review Letters, 2012, 109(18):2669-2674.
[33] Akerib D S, Araujo H M, BAI X, et al. First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facili-ty[J]. Physical Review Letters, 2014, 112(9):091303.
[34] Agnes P, Alexander T, Alton A, et al. First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso[J]. Physics Letters B, 2015, 743(456-466).
[35] Abe K, Hieda K, Hiraide K, et al. Search for Bosonic Superweakly In-teracting Massive Dark Matter Particles with the XMASS-I Detector[J]. Phys Rev Lett, 2014, 113(12):121301.
[36] Boulay M G, Collaboration D. DEAP-3600 Dark Matter Search at SNOLAB[C]//12th International Conference on Topics In Astroparticle And Underground Physics (Taup 2011), Pts 1-6. Bristol:Iop Publish-ing Ltd, 2012:012027.
[37] Akerib D S, Araujo H M, Bai X, et al. Improved WIMP scattering lim-its from the LUX experiment[DB/OL]. arXiv:1512.03506v1, 2015:1-6.