专题论文

基于地下实验室的暗物质直接探测实验

  • 赵伟 ,
  • 程建平 ,
  • 岳骞
展开
  • 清华大学工程物理系, 北京 100084
赵伟,博士研究生,研究方向为粒子物理实验,电子信箱:w-zhao11@mail.tsinghua.edu.cn

收稿日期: 2016-02-02

  修回日期: 2016-02-18

  网络出版日期: 2016-03-25

基金资助

国家自然科学基金项目(10935005,10945002,11275107,11175099,11475099)

Dark matter direct detection experiments in underground laboratory

  • ZHAO Wei ,
  • CHENG Jianping ,
  • YUE Qian
Expand
  • Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Tsinghua University, Beijing 100084, China

Received date: 2016-02-02

  Revised date: 2016-02-18

  Online published: 2016-03-25

摘要

暗物质研究是当前基础物理研究的前沿热点课题之一,对天体物理学、宇宙学和粒子物理学等学科的发展具有十分重要的意义。暗物质的直接探测实验是进行暗物质研究的手段之一,也被认为是最为重要的一种方法。本文介绍:暗物质的不同探测方法、暗物质直接探测实验的原理;国际上主要的地下实验室、针对轻质量和重质量暗物质进行直接探测的典型实验及目前取得的进展;下一代实验将面临的挑战和机遇。

本文引用格式

赵伟 , 程建平 , 岳骞 . 基于地下实验室的暗物质直接探测实验[J]. 科技导报, 2016 , 34(5) : 26 -31 . DOI: 10.3981/j.issn.1000-7857.2016.05.003

Abstract

The research of dark matter is one of the most fundamental and challenging topics in the frontier of modern physics, which is significant to the development of cosmology and particle physics. The direct detection experiment of dark matter is one of methods to the research of dark matter, which is thought to be the most compromising. This paper represents: the dark matter detection methods, especially emphasizing on the principle of the direct detection; the main underground laboratories in the world; the typical direct detection experiments aiming at light and heavy dark matter respectively; the prospects of the next generation of dark matter direct detection experiments.

参考文献

[1] Sanders R H. THE DARK MATTER PROBLEM:A Historical Perspec-tive[M]. New York:Cambridge University Press, 2010.
[2] Cho A. Universe's High-Def Baby Picture Confirms Standard Theory[J]. Science, 2013, 339:1513.
[3] Bertone G, Hooper D, Silk J. Particle Dark Matter:evidence candidates and constraints[J]. Physics Reports. 2005, 405:279-390.
[4] CERN. The accelerator complex[EB/OL].[2016-01-26]. http://home.cern/topics/large-hadron-collider.
[5] Bi X J, Yin P F, Zhou N. Looking for dark matter in colliders[J]. Phys-ics, 2015, 44(11):714-721.
[6] Chang J, Feng L,Guo JH. Detecting dark matter in space[J]. Physics, 2015, 44(11):707-713.
[7] Silk J, Olive K, Srednicki M. The photino, the sun, and high-energy neutrinos[J]. Phys Rev Lett, 1985, 55(2):257-259.
[8] Bertone G. The moment of truth for WIMP dark matter[J]. Nature, 2010, 468(7322):389-393.
[9] Adriani O, Barbarino G C, Bazilevskaya G A, et al. An anomalous posi-tron abundance in cosmic rays with energies 1.5-100 GeV[J]. Nature, 2009, 458:607-609.
[10] Adriani O, Barbarino G C, Bazilevskaya G A, et al. Cosmic-Ray Elec-tron Flux Measured by the PAMELA Experiment between 1 and 625 GeV[J]. Physical Review Letters, 2011, 106(201101):1-5.
[11] Ackermann M, Ajello M, Allafort A, et al. Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope[J]. Physical Review Letters, 2012, 108(011103):17.
[12] Accardo L, Aguilar M, Aisa D, et al. High statistics measurement of the positron fraction in primary cosmic rays of 0.5-500 GeV with the alpha magnetic spectrometer on the international space station[J]. Phys Rev Lett, 2014, 113(12):121101.
[13] 李强.中国暗物质粒子探测卫星启运酒泉——择机年底发射[EB/OL]. 2015-11-16. http://news.xinhuanet.com/info/2015-11/16/c_134819779.htm.
[14] Lewin J D, Smith P F. Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil[J]. Astroparticle Physics, 1996, 6(1):87-112.
[15] Kang K J, Cheng J P, Chen Y H, et al. Status and prospects of a deep underground laboratory in China[J]. Journal of Physics:Conference Series, 2010, 203(1):20-28.
[16] 程建平, 吴世勇, 岳骞, 等. 国际地下实验室发展综述[J]. 物理, 2011, 40(3):149-154.
[17] 刘仲华.日本加拿大2位科学家荣获2015年诺贝尔物理学奖[EB/OL]. 2015-10-16. http://news.163.com/15/1006/18/B58V33JD00014JB6.html#from=relevant#xwwzy_35_bottomnewskwd.
[18] 杨先武, 李胜蓝. 世界第二深埋隧道——锦屏山隧道贯通[EB/OL]. 2008-08-10[2015-11-25].http://scnews.newssc.org/system/2008/08/10/011024983.shtml.
[19] Wu Y C, Hao X Q, Yue Q, et al. Measurement of cosmic ray flux in the China JinPing underground laboratory[J]. Chinese Physics C, 2013, 37(8):45-49.
[20] Zeng Z, Su J, Ma H, et al. Environmental gamma background measure-ments in China Jinping Underg round Laboratory[J]. J Radioanal Nu-cl Ch, 2014, 301(2):443-450.
[21] Zhao W, Yue Q, Kang K J, et al. First results on low-mass WIMPs from the CDEX-1 experiment at the China Jinping underground labo-ratory[J]. Physical Review D, 2013, 88(5):1201-1205.
[22] Yue Q, Zhao W, Kang K J, et al. Limits on light weakly interacting massive particles from the CDEX-1 experiment with a p-type pointcontact germanium detector at the China Jinping Underground Labora-tory[J]. Physical Review D, 2014, 90(9):091701.
[23] Xiao M J, Xiao X, Zhao L, et al. First dark matter search results from the PandaX-I experiment[J]. Sci China Phys Mech, 2014, 57(11):2024-2030.
[24] JAINMIN LIA X J, et al. The second-phase development of the CJPL[J]. Physics Procedia, 2015, 61:576-585.
[25] Cushman P.C G, Mckinsey D. N., Robertson H., et al.. Snowmass CF1 Summary:WIMP Dark Matter Direct Detection[DB/OL]. arXiv:13108327v1, 2013, 8(2):395-410.
[26] Aalseth C E, Barbeau P S, Colaresi J, et al. CoGeNT:A search for low-mass dark matter using p-type point contact germanium detectors[J]. Physical Review D, 2013, 88(1):012002.
[27] Li H B, Liao H Y, Lin S T, et al. Limits on Spin-Independent Cou-plings of WIMP Dark Matter with a p-Type Point-Contact Germani-um Detector[J]. Physical Review Letters, 2013, 110(26):1-6.
[28] Zhao W, Yue Q, Li J. Progress in the China dark matter experiment (CDEX)[J]. Chinese Science Bulletin (Chinese Version), 2015, 60(25):2376-2386.
[29] Agnese R, Anderson A J, Asai M, et al. Search for Low-Mass Weakly Interacting Massive Particles Using Voltage-Assisted Calorimetric Ion-ization Detection in the SuperCDMS Experiment[J]. Physical Review Letters, 2014, 112(4):105-110.
[30] Armengaud E, Augier C, Benoit A, et al. First results of the EDEL-WEISS-II WIMP search using Ge cryogenic detectors with inter-leaved electrodes[J]. Physics Letters B, 2010, 687(4-5):294-298.
[31] Angloher G. A B., et al. Results on light dark matter particles with a low-threshold CRESST-II detector[DB/OL]. arXiv:150901515v1, 2015:1-8.
[32] Aprile E, Alfonsi M, Arisaka K, et al. Dark Matter Results from 225 Live Days of XENON100 Data[J]. Physical Review Letters, 2012, 109(18):2669-2674.
[33] Akerib D S, Araujo H M, BAI X, et al. First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facili-ty[J]. Physical Review Letters, 2014, 112(9):091303.
[34] Agnes P, Alexander T, Alton A, et al. First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso[J]. Physics Letters B, 2015, 743(456-466).
[35] Abe K, Hieda K, Hiraide K, et al. Search for Bosonic Superweakly In-teracting Massive Dark Matter Particles with the XMASS-I Detector[J]. Phys Rev Lett, 2014, 113(12):121301.
[36] Boulay M G, Collaboration D. DEAP-3600 Dark Matter Search at SNOLAB[C]//12th International Conference on Topics In Astroparticle And Underground Physics (Taup 2011), Pts 1-6. Bristol:Iop Publish-ing Ltd, 2012:012027.
[37] Akerib D S, Araujo H M, Bai X, et al. Improved WIMP scattering lim-its from the LUX experiment[DB/OL]. arXiv:1512.03506v1, 2015:1-6.
文章导航

/