研究论文

磐安结构性黄土的构度及动强度衰减特性

  • 孙萍 ,
  • 李荣建 ,
  • 刘军定 ,
  • 张媛 ,
  • 张帅
展开
  • 1. 中国地质科学院地质力学研究所, 北京 100081;
    2. 国土资源部新构造运动与地质灾害重点实验室, 北京 100081;
    3. 西安理工大学岩土工程研究所, 西安 710048
孙萍,副研究员,研究方向为岩土工程与地质灾害,电子信箱:sunpingcgs@163.com

收稿日期: 2015-06-02

  修回日期: 2015-11-10

  网络出版日期: 2016-03-25

基金资助

国家自然科学基金项目(41472296,11072193);陕西省黄土力学与工程重点实验室项目(14JS064);中国地质调查局地质调查项目(12120114035901)

Structural index and dynamic strength attenuation characteristics of structural loess in Pan'an

  • SUN Ping ,
  • LI Rongjian ,
  • LIU Junding ,
  • ZHANG Yuan ,
  • ZHANG Shuai
Expand
  • 1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;
    2. Key Laboratory of Neotectonic Movement and Geohazard, Ministry of Land and Resources, Beijing 100081, China;
    3. Institute of Geotechnical Engineering, Xi'an University of Technology, Xi'an 710048, China

Received date: 2015-06-02

  Revised date: 2015-11-10

  Online published: 2016-03-25

摘要

以磐安黄土为样本,基于无侧限单轴抗压试验得到的磐安黄土构度指标,分析了原状黄土与重塑黄土的结构性差异;通过动三轴试验,对原状黄土、重塑黄土在天然含水率、饱和含水率条件下的动强度衰减特性进行了对比研究。结果表明,天然含水率的原状黄土及重塑黄土均具有较强的结构性,原状黄土的结构性更强,其动强度明显高于重塑黄土的动强度;虽然饱和过程使得原状黄土的动强度大大降低,但饱和原状黄土的动强度仍高于饱和重塑黄土的动强度,且饱和原状黄土的动孔压增长趋势明显慢于饱和重塑黄土;具有较强结构性的黄土,其动强度曲线不会出现归一化。

本文引用格式

孙萍 , 李荣建 , 刘军定 , 张媛 , 张帅 . 磐安结构性黄土的构度及动强度衰减特性[J]. 科技导报, 2016 , 34(5) : 74 -78 . DOI: 10.3981/j.issn.1000-7857.2016.05.008

Abstract

Based on the unconfined uniaxial compression tests of Pan'an loess, the structure index and the structure variations between the intact loess and the remolded loess are analyzed. Then, by means of dynamic triaxial tests, the comparison is performed for dynamic strength attenuation characteristics between natural intact loess, remolded loess, saturated intact loess and saturated remolded loess. Results show the followings. Owing to the structure of loess, the dynamic strength of natural intact loess with stronger structure is obviously higher than that of remodeled loess; though the saturation process makes the dynamic strength of intact loess reduced greatly, the dynamic strength of saturated intact loess is still higher than that of the saturated remodeled loess, and the dynamic pore pressure of saturated intact loess grows significantly slower than that of the saturated remodeled loess. In addition, the dynamic strength curves of loess with stronger structure will not be normalized.

参考文献

[1] 谢定义. 试论我国黄土力学研究中的若干新趋向[J]. 岩土工程学报, 2001, 23(1):3-13. Xie Dingyi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal Geotechnical Engineering, 2001, 23(1):3-13.
[2] 谢定义, 齐吉琳. 土结构性及其定量化参数研究的新途径[J]. 岩土工程学报, 1999, 21(6):651-656. Xie Dingyi, Qi Jilin. Soil structure characteristics and new approach in research on its quantitative parameter[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6):651-656.
[3] 陈存礼, 胡再强, 高鹏. 原状黄土的结构性及其与变形特性关系研究[J]. 岩土力学, 2006, 27(11):1891-1896. Chen Cunli, Hu Zaiqiang, Gao Peng. Research on relationship between structure and deformation property of intact loess[J]. Rock and Soil Mechanics, 2006, 27(11):1891-1896.
[4] 邵生俊, 周飞飞, 龙吉勇. 原状黄土结构性及其定量化参数研究[J]. 岩土工程学报, 2004, 26(4):531-536. Shao Shengjun, Zhou Feifei, Long Jiyong. Structural properties of loess and its quantitative parameter[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4):531-536.
[5] 邵生俊, 邓国华. 原状黄土的结构性强度特性及其在黄土隧道围岩压力分析中的应用[J]. 土木工程学报, 2008, 41(11):93-98. Shao Shengjun, Deng Guohua. The strength characteristics of loess with different structures and its application in analyzing the earth pressure on loess tunnel[J]. China Civil Engineering Journal, 2008, 41(11):93-98.
[6] 邵生俊, 龙吉勇, 杨生, 等. 湿陷性黄土结构性变形特性分析[J]. 岩土力学, 2006, 27(10):1668-1672. Shao Shengjun, Long Jiyong, Yang Sheng, et al. Analysis of structural deformation properties of collapsible loess[J]. Rock and Soil Mechanics, 2006, 27(10):1668-1672.
[7] 骆亚生, 谢定义, 邵生俊, 等. 复杂应力状态下的土结构性参数[J]. 岩石力学与工程学报, 2004, 23(24):4248-4251. Luo Yasheng, Xie Dingyi, Shao Shengjun, et al. Structural parameter of soil under complex stress conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24):4248-4251.
[8] 邓国华, 邵生俊. 基于真三轴试验的黄土结构性变化规律研究[J]. 岩土力学, 2013, 34(3):679-684. Deng Guohua, Shao Shengjun. Research on change structural characteristics of loess based on true triaxial tests[J]. Rock and Soil Mechanics, 2013, 34(3):679-684.
[9] 方娟, 邵生俊, 陈昌禄. 单轴抗压强度和圆锥贯入度条件下的构度指标[J]. 辽宁工程技术大学学报:自然科学版, 2014, 33(2):207-212. Fang Juan, Shao Shengjun, Chen Changlu. Structural index by unconfined compressive strength and cone penetrometer[J]. Journal of Liaoning Technical University:Natural Science Edition, 2014, 33(2):207-212.
[10] 邵生俊, 郑文, 王正泓, 等. 黄土的构度指标及其试验确定方法[J]. 岩土力学, 2010, 31(1):15-19. Shao Shengjun, Zheng Wen, Wang Zhenghong, et al. Structural index of loess and its testing method[J]. Rock and Soil Mechanics, 2010, 31(1):15-19.
[11] Li R J, Liu J D, Yan R, et al. Characteristics of structural loess strength and preliminary framework for joint strength formula[J]. Water Science and Engineering, 2014, 7(3):319-330.
[12] Li R J, Liu J D, Yan R, et al. Evaluation of loess landslide disaster based on the developed hyperbola strength of structural loess[J]. Disaster Advances, 2013, 6(s5):316-326.
[13] Rinaldi V A, Capdevila J A. Effect of cement and saturation on the stress-strain behavior of a silty clay[C]//Proceedings of the Fourth International Conference on Unsaturated Soils. American Society of Civil Engineers Geotechnical Special Publication, 2006, 147:1157-1168.
[14] Capdevila J A, Rinaldi V A. Stress-strain behavior of a heterogeneous and lightly cemented soil under triaxial compression test[J]. Electronic Journal of Geotechnical Engineering, 2015, 20(6):6745-6760.
[15] 王谦, 王峻, 王兰民, 等. 石碑塬饱和黄土地震液化机制探讨[J]. 岩石力学与工程学报, 2014, 33(增2):4168-4173. Wang Qian, Wang Jun, Wang Lanmin, et al. Dissussion on mechanism of seismic liquefaction of saturation loess in Shibei Tableland, Guyuan city[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Suppl 2):4168-4173.
[16] 杨利国, 骆亚生, 李焱, 等. 初始应力条件对压实黄土动强度影响的研究[J]. 岩土力学, 2010, 31(1):87-91. Yang Liguo, Luo Yasheng, Li Yan, et al. Research on effect of initial stress conditions on dynamic strength of compacted loess[J]. Rock and Soil Mechanics, 2010, 31(1):87-91.
[17] 李雨倩, 李光元, 谷天峰, 等. 基于动三轴试验的黄土高边坡地震稳定性分析[J]. 科学技术与工程, 2014, 14(30):232-236. Li Yuqian, Li Guangyuan, Gu Tianfeng, et al. Analysis on earthquake stability of loess slope based on dynamic triaxial text[J]. Science Technology and Engineering, 2014, 14(30):232-236.
[18] 慕焕东, 邓亚虹, 彭建兵. 西安地区地裂缝带黄土动力特性试验研究[J]. 工程地质学报, 2014, 22(5):951-957. Mu Huandong, Deng Yahong, Peng Jianbing. Experimental research on loess dynamic characteristics at ground fissure belt in Xi'an area[J]. Journal of Engineering Geology, 2014, 22(5):951-957.
[19] 李忠铭, 愈国安. 不同应力状态土的动强度问题[J]. 桂林工学院学报, 2002, 22(3):269-273. Li Zhongming, Yu Guoan. On dynamic strength of soil under different stress conditions[J]. Journal of Guilin Institute of Technology, 2002, 22(3):269-273.
[20] Jiang M J, Zhang F G, Hu H J, et al. Structural characterization of natural loess and remolded loess under triaxial tests[J]. Engineering Geology. 2014, 181(2):249-260.
[21] 宋章, 程谦恭, 张炜, 等. 原状黄土的结构强度变形特性分析[J]. 铁道工程学报, 2007, 24(3):6-11. Song Zhang, Cheng Qiangong, Zhang Wei, et al. Analysis of structural strength and deformation properties of intact loess[J]. Journal of Railway Engineering Society, 2007, 24(3):6-11.
[22] Kamei T, Tokida M. Comparison of undrained shear characteristics of undisturbed and remoulded cohesive soil[C]//Proceedings of the Japan Society of Civil Engineers. Tokyo:Published by Japan Society of Civil Engineers, 1993:135-138.
[23] Zhong Z L, Liu Y X, Liu X R, et al. Influence of moisture content on shearing strength of unsaturated undisturbed quaternary system middle pleistocene[J]. Journal of Central South University. 2015, 22(7):2776-2782.
文章导航

/