研究论文

燃煤电厂电除尘PM10和PM2.5的排放控制VII:以2×600 MW机组为例分析讨论电除尘选型和改造

  • 梁志宏 ,
  • 李栓宝 ,
  • 陈俊峰 ,
  • 张金海 ,
  • 陈宝瑞 ,
  • 薛祥忠 ,
  • 王仕龙 ,
  • 闫克平
展开
  • 1. 神华国能王曲电厂, 潞城 047500;
    2. 神华国能集团有限公司, 北京 100033;
    3. 浙江大学生物质化工教育部重点实验室, 杭州 310027
梁志宏,高级工程师,研究方向为燃煤电厂运行和管理,电子信箱:17052573@shenhua.cc

收稿日期: 2015-05-27

  修回日期: 2015-06-22

  网络出版日期: 2016-03-25

基金资助

国家高技术研究发展计划(863计划)项目(2013AA065000);浙江省重点科技创新团队计划(2013TD07)

PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants VII: ESP sizing and refitting with 2×600 MW boilers

  • LIANG Zhihong ,
  • LI Shuanbao ,
  • CHEN Junfeng ,
  • ZHANG Jinhai ,
  • CHEN Baorui ,
  • XUE Xiangzhong ,
  • WANG Shilong ,
  • YAN Keping
Expand
  • 1. Wangqu Power Plant, Shenhua Guoneng Energy Group Corporation Limited, Lucheng 047500, China;
    2. Shenhua Guoneng Energy Group Corporation Limited, Beijing 100033, China;
    3. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China

Received date: 2015-05-27

  Revised date: 2015-06-22

  Online published: 2016-03-25

摘要

分析了2×600 MW机组所配套的两台双室五电场电除尘器(ESP)的设计、选型和改造。每台电除尘配套20台高压电源、一台炉配40台高压电源,改造工作不仅包括更换原80台单相电源为80台三相电源,而且将第一和第二电场的极板、极线及振打系统全部做了更换,改造后电除尘出口PM10和PM2.5(粒径分别低于10 μm和2.5 μm的颗粒物)的排放分别低于15 mg·Nm-3和1.0 mg·Nm-3,PM2.5占PM10的比例在6.5%~7.5%,与改造前比较PM2.5下降了95%以上。

本文引用格式

梁志宏 , 李栓宝 , 陈俊峰 , 张金海 , 陈宝瑞 , 薛祥忠 , 王仕龙 , 闫克平 . 燃煤电厂电除尘PM10和PM2.5的排放控制VII:以2×600 MW机组为例分析讨论电除尘选型和改造[J]. 科技导报, 2016 , 34(5) : 84 -88 . DOI: 10.3981/j.issn.1000-7857.2016.05.010

Abstract

This paper discusses electrostatic precipitator (ESP) sizing,refitting and upgrading with 2×600 MW coal-fired boilers. Each boiler is equipped with two five-fields ESPs and 40 high-voltage (HV) power sources. Upgrading the HV power source refers to replacing the 80 single-phase HV sources by using 80 three-phase HV sources. Refitting ESP mainly includes changing both HV and collection electrodes and their rapping systems of the first and second electrical fields. PM10 and PM2.5 emission concentrations at ESP outlets drop below 15 mg·Nm-3 and 1.0 mg·Nm-3, respectively. The PM2.5 to PM10 ratio is around 6.5%~7.5%. In comparison with previous emission, PM2.5 concentration drops down by more than 95%.

参考文献

[1] 肖创英. 促进燃煤电厂烟尘超低排放[J]. 科技导报, 2014, 32(33):12. Xiao Chuangying. Technical progress for achieving low particle matter emission from coal-fired power plant[J]. Science & Technology Review, 2014, 32(33):12.
[2] 王仕龙, 陈英, 韩平, 等. 燃煤电厂电除尘PM10和PM2.5的排放控制I:电除尘选型及工业应用[J]. 科技导报, 2014, 32(33):23-33. Wang Shilong, Chen ying, Han Ping, et al. PM10 and PM2.5 emission control by electrostatic precipitator(ESP) for coal-fired power plants I:ESP sizing and application[J]. Science & Technology Review, 2014, 32(33):23-33.
[3] 王仕龙. 煤电厂电除尘PM10和PM2.5的排放控制II:电除尘电源改造与PM10和PM2.5的排放, 以660 MW机组为例[J]. 科技导报, 2014, 32(33):34-38. Wang Shilong. PM10 and PM2.5 emission control by electrostatic precipitator(ESP) for coal-fired power plants II:evaluation of ESP upgrading in terms of PM10 and PM2.5 emission reduction with a 660 MW generator[J]. Science & Technology Review, 2014, 32(33):34-38.
[4] 王仕龙, 陈英, 韩平, 等. 燃煤电厂电除尘PM10和PM2.5的排放控制III:电除尘电源及小分区改造与PM10和PM2.5的排放(以4×330 MW机组为例)[J]. 科技导报, 2014, 32(33):39-42. Wang Shilong, Chen ying, Han Ping, et al. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants III:application with a 4×330 MW power plant[J]. Science & Technology Review, 2014, 32(33):39-42.
[5] 马元坤, 秦松, 陈亮, 等. 燃煤电厂电除尘PM10和PM2.5的排放控制V:以660 MW机组为例分析讨论高压电源运行优化[J]. 科技导报, 2015, 33(6):69-72. Ma Yuankun, Qin Song, Chen Liang, et al. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired Power Plants V:Optimization of HV power source with 660 MW boiler[J], Science & Technology Review, 2015, 32(6):69-72.
[6] White H J. Industrial electrostatic precipitation[M]. Boston:Addison Wesley, 1963.
[7] Oglesby S. Electrostatic precipitation[M]. New York:Marcel dekker INC Press, 1978.
[8] Parker K R. Applied electrostatic precipitation[M]. London:Blackie Academic & Professional, 1997.
[9] Huang Y, Li S, Zheng Q, et al. Recent progress of dry electrostatic precipitation for PM2.5 emission control from coal-fired boilers[J]. International Journal of Plasma Environmental Science & Technology.
[10] 郦建国, 刘云. 中国煤种成分对电除尘器性能影响及电除尘器适应性评价[J]. 科技导报, 2010, 28(7):104-109. Li Jianguo, Liu Yun. The effect of compositions of domestic coal on the performance of ESP and an evaluation of ESP adaptability[J].Science & Technology Review, 2010, 28(7):104-109.
[11] 陈国榘. 适应新排放标准的火电厂除尘技术[J]. 科技导报, 2010, 28(3):90-95. Chen Guoqu. Dust control technologies under the new emission standard for thermal power plants[J]. Science & Technology Review, 2010, 28(3):90-95.
[12] Li X, Zhang X, Zhu J, et al. Sensitivity analysis on the maximum ash resistivity in terms of its compositions and gaseous water concentration[J]. Journal of Electrostatics, 2012, 70:83-90.
[13] Li S, Li X, Huang Y, et al. Fly ash resistivity:influencing factors, predicting models and its impacts on electrostatic precipitator performance[M]//Sarker P K, Fly ash, sources, applications and potential environmental impacts, New Yorks:NOVA Science Publishers, 2014:91-144.
[14] Zhu J, Zhao Q, Yao Y, et al. Effects of high-voltage power sources on fine particle collection efficiency with an industrial electrostatic precipitator[J]. Journal of Electrostatics, 2012, 70(3):285-291.
[15] 沈欣军, 郑钦臻, 宁致远, 等. 燃煤电厂电除尘PM10和PM2.5的排放控制IV:采用二维PIV除尘[J]. 科技导报, 2014, 32(33):43-50. Shen Xinjun, Zheng Qinzhen, Ning Zhiyuan, et al. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants IV:Investigation on electrostatic precipitation by means of 2D PIV technique[J]. Science & Technology Review, 2014, 32(33):43-50.
文章导航

/