[1] Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chemical Society Reviews, 2015, 44(8):2168-2201.
[2] Stamenkovic V, Mun B S, Mayrhofer K J J, et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J]. Angewandte Chemie, 2006, 118(18):2963-2967.
[3] Stamenkovic V R, Markovic N M. Oxygen reduction on platinum bime-tallic alloy catalysts[J]. Handbook of Fuel Cells, 2009.
[4] Zhang J, Sasaki K, Sutter E, et al. Stabilization of platinum oxygen-re-duction electrocatalysts using gold clusters[J]. Science, 2007, 315(5809):220-222.
[5] Chen C, Kang Y, Huo Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177):1339-1343.
[6] Shao M, Sasaki K, Marinkovic N S, et al. Synthesis and characteriza-tion of platinum monolayer oxygen-reduction electrocatalysts with Co-Pd core-shell nanoparticle supports[J]. Electrochemistry Communica-tions, 2007, 9(12):2848-2853.
[7] Srivastava R, Mani P, Hahn N, et al. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparti-cles[J]. Angewandte Chemie International Edition, 2007, 46(47):8988-8991.
[8] Wang D, Xin H L, Hovden R, et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nature materials, 2013, 12(1):81-87.
[9] Zhang G, Shao Z G, Lu W, et al. Aqueous-phase synthesis of sub 10 nm Pdcore@Ptshell nanocatalysts for oxygen reduction reaction using amphiphilic triblock copolymers as the reductant and capping agent[J]. The Journal of Physical Chemistry C, 2013, 117(26):13413-13423.
[10] Hu J, Kuttiyiel K A, Sasaki K, et al. Pt monolayer shell on nitrided al-loy core-a path to highly stable oxygen reduction catalyst[J]. Cata-lysts, 2015, 5(3):1321-1332.
[11] Zhang J, Vukmirovic M B, Xu Y, et al. Controlling the Catalytic Activ-ity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates[J]. Angewandte Chemie International Edition, 2005, 44(14):2132-2135.
[12] Vante N A, Tributsch H. Energy conversion catalysis using semicon-ducting transition metal cluster compounds[J]. Nature, 1986, 323(6087):431-432.
[13] 聂瑶, 丁炜, 魏子栋. 质子交换膜燃料电池非铂电催化剂研究进展[J]. 化工学报, 2015, (66):3305-3318.
[14] Lefèvre M, Proietti E, Jaouen F, et al. Iron-based catalysts with im-proved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009, 324(5923):71-74.
[15] Hu Y, Jensen J O, Zhang W, et al. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts[J]. Angewandte Chemie International Edition, 2014, 53(14):3675-3679.
[16] Peng H, Mo Z, Liao S, et al. High performance Fe-and N-doped car-bon catalyst with graphene structure for oxygen reduction[J]. Scientific Reports, 2013.
[17] Ding W, Wei Z, Chen S, et al. Space-Confinement-Induced Synthesis of Pyridinic-and Pyrrolic-Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction[J]. Angewandte Chemie, 2013, 125(45):11971-11975.
[18] Ding W, Li L, Xiong K, et al. Shape fixing via salt recrystallization:A morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction re-action[J]. Journal of the American Chemical Society, 2015, 137(16):5414-5420.
[19] Jin H, Zhang H, Zhong H, et al. Nitrogen-doped carbon xerogel:A novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells[J]. Energy & Environmen-tal Science, 2011, 4(9):3389-3394.
[20] Chen S, Wang L, Wu Q, et al. Advanced non-precious electrocatalyst of the mixed valence CoOx nanocrystals supported on N-doped carbon nanocages for oxygen reduction[J]. Science China Chemistry, 2015, 58(1):180-186.
[21] Sun T, Wu Q, Che R, et al. Alloyed Co-Mo Nitride as High-Perfor-mance Electrocatalyst for Oxygen Reduction in Acidic Medium[J]. ACS Catalysis, 2015, 5(3):1857-1862.
[22] Kolde J A, Hobson, A R, Electrode apparatus for use in electrochemi-cal system|comprises composite membrane which is uniform, strong, stable and allows faster ion transport, used in fuel cells, electrodialy-sis, etc:US, US5635041-A[P].[2016-02-03].
[23] Liu F, Yi B, Xing D, et al. Nafion/PTFE composite membranes for fu-el cell applications[J]. Journal of Membrane Science, 2003, 212(1):213-223.
[24] Liu Y H, Yi B, Shao Z G, et al. Carbon nanotubes reinforced Nafion composite membrane for fuel cell applications[J]. Electrochemical and solid-state letters, 2006, 9(7):A356-A359.
[25] Xing D M, Yi B L, Liu F Q, et al. Characterization of sulfonated poly (ether ether ketone)/polytetrafluoroethylene composite membranes for fuel cell applications[J]. Fuel Cells-From Fundamentals to Systems, 2005(3):406-411.
[26] Zhao D, Yi B L, Zhang H M, et al. Cesium substituted 12-tungsto-phosphoric (CsxH3-xPW12O40) loaded on ceria-degradation mitigation in polymer electrolyte membranes[J]. Journal of power Sources, 2009, 190(2):301-306.
[27] Yao Y, Liu J, Liu W, et al. Vitamin E assisted polymer electrolyte fu-el cells[J]. Energy & Environmental Science, 2014, 7(10):3362-3370.
[28] Tang H, Wan Z, Pan M, et al. Self-assembled Nafion-silica nanoparti-cles for elevated-high temperature polymer electrolyte membrane fuel cells[J]. Electrochemistry Communications, 2007, 9(8):2003-2008.
[29] Devanathan R. Recent developments in proton exchange membranes for fuel cells[J]. Energy & Environmental Science, 2008, 1(1):101-119.
[30] Wang L, Zhao D, Zhang H M, et al. Water-retention effect of compos-ite membranes with different types of nanometer silicon dioxide[J]. Electrochemical and Solid-State Letters, 2008, 11(11):B201-B204.
[31] Aharoni S M, Litt M H. Synthesis and some properties of poly-(2, 5-trimethylene benzimidazole) and poly-(2, 5-trimethylene benzimid-azole hydrochloride)[J]. Journal of Polymer Science:Polymer Chemis-try Edition, 1974, 12(3):639-650.
[32] Zhai Y, Zhang H, Liu G, et al. Degradation Study on MEA in H3PO4/PBI High-Temperature PEMFC Life Test[J]. Journal of The Electro-chemical Society, 2007, 154(1):B72-B76.
[33] Zhai Y, Zhang H, Zhang Y, et al. A novel H3PO4/Nafion-PBI compos-ite membrane for enhanced durability of high temperature PEM fuel cells[J]. Journal of Power Sources, 2007, 169(2):259-264.
[34] Li M Q, Shao Z G, Scott K. A high conductivity Cs2.5H0.5PMo12O40/poly-benzimidazole (PBI)/H3PO4 composite membrane for proton-exchange membrane fuel cells operating at high temperature[J]. Journal of Power Sources, 2008, 183(1):69-75.
[35] Li Q, Jensen J O, Savinell R F, et al. High temperature proton ex-change membranes based on polybenzimidazoles for fuel cells[J]. Prog-ress in Polymer Science, 2009, 34(5):449-477.
[36] Ossiander T, Perchthaler M. Influence of membrane type and molecu-lar weight distribution on the degradation of PBI-based HTPEM fuel cells[J]. Journal of Membrane Science, 2016, 509:27-35.
[37] 张敏, 谢志勇, 黄启忠. 长炭纤维网对PEMFC用炭纸性能的影响[J] 中南大学学报(自然科学版), 2011, (42):2606-2612.
[38] Gerteisen D, Heilmann T, Ziegler C. Enhancing liquid water transport by laser perforation of a GDL in a PEM fuel cell[J]. Journal of Power Sources, 2008, 177(2):348-354.
[39] Tanuma T. Innovative hydrophilic microporous layers for cathode gas diffusion media[J]. Journal of The Electrochemical Society, 2010, 157(12):B1809-B1813.
[40] Chun J H, Jo D H, Kim S G, et al. Development of a porosity-graded micro porous layer using thermal expandable graphite for proton ex-change membrane fuel cells[J]. Renewable energy, 2013, 58:28-33.
[41] Markötter H, Haussmann J, Alink R, et al. Influence of cracks in the microporous layer on the water distribution in a PEM fuel cell investi-gated by synchrotron radiography[J]. Electrochemistry Communica-tions, 2013, 34:22-24.
[42] 宋微, 俞红梅, 邵志刚, 等. 一种燃料电池膜电极的制备方法:中国[P]. 2014-09-24.
[43] Debe M K. Nanostructured thin film electrocatalysts for PEM fuel cells-a tutorial on the fundamental characteristics and practical prop-erties of NSTF catalysts[J]. Ecs Transactions, 2012, 45(2):47-68.
[44] Zhang C, Yu H, Li Y, et al. Supported noble metals on Hydrogen-Treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells[J]. ChemSusChem, 2013, 6(4):659-666.
[45] Brady M P, Wang H, Yang B, et al. Growth of Cr-Nitrides on commer-cial Ni-Cr and Fe-Cr base alloys to protect PEMFC bipolar plates[J]. International Journal of Hydrogen Energy, 2007, 32(16):3778-3788.
[46] Fu Y, Hou M, Lin G, et al. Coated 316L stainless steel with CrxN film as bipolar plate for PEMFC prepared by pulsed bias arc ion plating[J]. Journal of Power Sources, 2008, 176(1):282-286.
[47] Fu Y, Lin G, Hou M, et al. Carbon-based films coated 316L stainless steel as bipolar plate for proton exchange membrane fuel cells[J]. Inter-national Journal of hydrogen energy, 2009, 34(1):405-409.
[48] 黄乃宝, 衣宝廉, 梁成浩. 聚苯胺改性钢在模PEMFC环境下的电化学行为[J]. 电源技术, 2007, (31):217-219.
[49] Zhang H, Lin G, Hou M, et al. CrN/Cr multilayer coating on 316L stainless steel as bipolar plates for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2012, 198:176-181.