专题论文

燃料电池的关键技术

  • 侯明 ,
  • 衣宝廉
展开
  • 中国科学院大连化学物理研究所, 大连 116023
侯明,研究员,研究方向为电化学及燃料电池技术,电子信箱:houming@dicp.ac.cn

收稿日期: 2016-02-03

  修回日期: 2016-03-02

  网络出版日期: 2016-04-14

基金资助

国家科技支撑计划项目(2015BAG06B00);国家重点基础研究发展计划(973计划)项目(2012CB215500)

Fuel Cell Technologies for vehicle applications

  • HOU Ming ,
  • YI Baolian
Expand
  • Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Dalian 116023, China

Received date: 2016-02-03

  Revised date: 2016-03-02

  Online published: 2016-04-14

摘要

以燃料电池技术链为主线,叙述燃料电池关键材料与部件、电堆、系统存在的问题、发展现状与研究热点。关键材料包括催化剂、离子交换膜、气体扩散层;电堆关键部件包括膜电极组件、双极板等;系统部件包括空压机、增湿器、氢回流泵、氢瓶等。关键材料与部件的成本与耐久性是燃料电池汽车实现商业化的基础。中国燃料电池部分技术指标已经达到或超过全球同类商品的水平,需要鼓励产业大力投入,建立批量生产线,促进中国燃料电池技术进步。

本文引用格式

侯明 , 衣宝廉 . 燃料电池的关键技术[J]. 科技导报, 2016 , 34(6) : 52 -61 . DOI: 10.3981/j.issn.1000-7857.2016.06.005

Abstract

In this paper, the state of the art of fuel cells for vehicles are reviewed. Based on the technology chain of vehicular fuel cells, the bottle-necks and research hot-points are elucidated in terms of materials, components and stacks. Particularly, the fuel cell materials include catalyst, ion exchange membrane and gas diffusion layer; the fuel cell components include membrane electrode assembly and bipolar plates; and the system components include air compressor, humidifier, hydrogen recirculation pump and hydrogen cylinder. Currently, some domestic FC materials have reached the standards of commercial products. The authors encourage industry partners to invest FC enterprises and build up relative production lines, promoting domestical FC technology progress.

参考文献

[1] Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chemical Society Reviews, 2015, 44(8):2168-2201.
[2] Stamenkovic V, Mun B S, Mayrhofer K J J, et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J]. Angewandte Chemie, 2006, 118(18):2963-2967.
[3] Stamenkovic V R, Markovic N M. Oxygen reduction on platinum bime-tallic alloy catalysts[J]. Handbook of Fuel Cells, 2009.
[4] Zhang J, Sasaki K, Sutter E, et al. Stabilization of platinum oxygen-re-duction electrocatalysts using gold clusters[J]. Science, 2007, 315(5809):220-222.
[5] Chen C, Kang Y, Huo Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177):1339-1343.
[6] Shao M, Sasaki K, Marinkovic N S, et al. Synthesis and characteriza-tion of platinum monolayer oxygen-reduction electrocatalysts with Co-Pd core-shell nanoparticle supports[J]. Electrochemistry Communica-tions, 2007, 9(12):2848-2853.
[7] Srivastava R, Mani P, Hahn N, et al. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparti-cles[J]. Angewandte Chemie International Edition, 2007, 46(47):8988-8991.
[8] Wang D, Xin H L, Hovden R, et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nature materials, 2013, 12(1):81-87.
[9] Zhang G, Shao Z G, Lu W, et al. Aqueous-phase synthesis of sub 10 nm Pdcore@Ptshell nanocatalysts for oxygen reduction reaction using amphiphilic triblock copolymers as the reductant and capping agent[J]. The Journal of Physical Chemistry C, 2013, 117(26):13413-13423.
[10] Hu J, Kuttiyiel K A, Sasaki K, et al. Pt monolayer shell on nitrided al-loy core-a path to highly stable oxygen reduction catalyst[J]. Cata-lysts, 2015, 5(3):1321-1332.
[11] Zhang J, Vukmirovic M B, Xu Y, et al. Controlling the Catalytic Activ-ity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates[J]. Angewandte Chemie International Edition, 2005, 44(14):2132-2135.
[12] Vante N A, Tributsch H. Energy conversion catalysis using semicon-ducting transition metal cluster compounds[J]. Nature, 1986, 323(6087):431-432.
[13] 聂瑶, 丁炜, 魏子栋. 质子交换膜燃料电池非铂电催化剂研究进展[J]. 化工学报, 2015, (66):3305-3318.
[14] Lefèvre M, Proietti E, Jaouen F, et al. Iron-based catalysts with im-proved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009, 324(5923):71-74.
[15] Hu Y, Jensen J O, Zhang W, et al. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts[J]. Angewandte Chemie International Edition, 2014, 53(14):3675-3679.
[16] Peng H, Mo Z, Liao S, et al. High performance Fe-and N-doped car-bon catalyst with graphene structure for oxygen reduction[J]. Scientific Reports, 2013.
[17] Ding W, Wei Z, Chen S, et al. Space-Confinement-Induced Synthesis of Pyridinic-and Pyrrolic-Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction[J]. Angewandte Chemie, 2013, 125(45):11971-11975.
[18] Ding W, Li L, Xiong K, et al. Shape fixing via salt recrystallization:A morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction re-action[J]. Journal of the American Chemical Society, 2015, 137(16):5414-5420.
[19] Jin H, Zhang H, Zhong H, et al. Nitrogen-doped carbon xerogel:A novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells[J]. Energy & Environmen-tal Science, 2011, 4(9):3389-3394.
[20] Chen S, Wang L, Wu Q, et al. Advanced non-precious electrocatalyst of the mixed valence CoOx nanocrystals supported on N-doped carbon nanocages for oxygen reduction[J]. Science China Chemistry, 2015, 58(1):180-186.
[21] Sun T, Wu Q, Che R, et al. Alloyed Co-Mo Nitride as High-Perfor-mance Electrocatalyst for Oxygen Reduction in Acidic Medium[J]. ACS Catalysis, 2015, 5(3):1857-1862.
[22] Kolde J A, Hobson, A R, Electrode apparatus for use in electrochemi-cal system|comprises composite membrane which is uniform, strong, stable and allows faster ion transport, used in fuel cells, electrodialy-sis, etc:US, US5635041-A[P].[2016-02-03].
[23] Liu F, Yi B, Xing D, et al. Nafion/PTFE composite membranes for fu-el cell applications[J]. Journal of Membrane Science, 2003, 212(1):213-223.
[24] Liu Y H, Yi B, Shao Z G, et al. Carbon nanotubes reinforced Nafion composite membrane for fuel cell applications[J]. Electrochemical and solid-state letters, 2006, 9(7):A356-A359.
[25] Xing D M, Yi B L, Liu F Q, et al. Characterization of sulfonated poly (ether ether ketone)/polytetrafluoroethylene composite membranes for fuel cell applications[J]. Fuel Cells-From Fundamentals to Systems, 2005(3):406-411.
[26] Zhao D, Yi B L, Zhang H M, et al. Cesium substituted 12-tungsto-phosphoric (CsxH3-xPW12O40) loaded on ceria-degradation mitigation in polymer electrolyte membranes[J]. Journal of power Sources, 2009, 190(2):301-306.
[27] Yao Y, Liu J, Liu W, et al. Vitamin E assisted polymer electrolyte fu-el cells[J]. Energy & Environmental Science, 2014, 7(10):3362-3370.
[28] Tang H, Wan Z, Pan M, et al. Self-assembled Nafion-silica nanoparti-cles for elevated-high temperature polymer electrolyte membrane fuel cells[J]. Electrochemistry Communications, 2007, 9(8):2003-2008.
[29] Devanathan R. Recent developments in proton exchange membranes for fuel cells[J]. Energy & Environmental Science, 2008, 1(1):101-119.
[30] Wang L, Zhao D, Zhang H M, et al. Water-retention effect of compos-ite membranes with different types of nanometer silicon dioxide[J]. Electrochemical and Solid-State Letters, 2008, 11(11):B201-B204.
[31] Aharoni S M, Litt M H. Synthesis and some properties of poly-(2, 5-trimethylene benzimidazole) and poly-(2, 5-trimethylene benzimid-azole hydrochloride)[J]. Journal of Polymer Science:Polymer Chemis-try Edition, 1974, 12(3):639-650.
[32] Zhai Y, Zhang H, Liu G, et al. Degradation Study on MEA in H3PO4/PBI High-Temperature PEMFC Life Test[J]. Journal of The Electro-chemical Society, 2007, 154(1):B72-B76.
[33] Zhai Y, Zhang H, Zhang Y, et al. A novel H3PO4/Nafion-PBI compos-ite membrane for enhanced durability of high temperature PEM fuel cells[J]. Journal of Power Sources, 2007, 169(2):259-264.
[34] Li M Q, Shao Z G, Scott K. A high conductivity Cs2.5H0.5PMo12O40/poly-benzimidazole (PBI)/H3PO4 composite membrane for proton-exchange membrane fuel cells operating at high temperature[J]. Journal of Power Sources, 2008, 183(1):69-75.
[35] Li Q, Jensen J O, Savinell R F, et al. High temperature proton ex-change membranes based on polybenzimidazoles for fuel cells[J]. Prog-ress in Polymer Science, 2009, 34(5):449-477.
[36] Ossiander T, Perchthaler M. Influence of membrane type and molecu-lar weight distribution on the degradation of PBI-based HTPEM fuel cells[J]. Journal of Membrane Science, 2016, 509:27-35.
[37] 张敏, 谢志勇, 黄启忠. 长炭纤维网对PEMFC用炭纸性能的影响[J] 中南大学学报(自然科学版), 2011, (42):2606-2612.
[38] Gerteisen D, Heilmann T, Ziegler C. Enhancing liquid water transport by laser perforation of a GDL in a PEM fuel cell[J]. Journal of Power Sources, 2008, 177(2):348-354.
[39] Tanuma T. Innovative hydrophilic microporous layers for cathode gas diffusion media[J]. Journal of The Electrochemical Society, 2010, 157(12):B1809-B1813.
[40] Chun J H, Jo D H, Kim S G, et al. Development of a porosity-graded micro porous layer using thermal expandable graphite for proton ex-change membrane fuel cells[J]. Renewable energy, 2013, 58:28-33.
[41] Markötter H, Haussmann J, Alink R, et al. Influence of cracks in the microporous layer on the water distribution in a PEM fuel cell investi-gated by synchrotron radiography[J]. Electrochemistry Communica-tions, 2013, 34:22-24.
[42] 宋微, 俞红梅, 邵志刚, 等. 一种燃料电池膜电极的制备方法:中国[P]. 2014-09-24.
[43] Debe M K. Nanostructured thin film electrocatalysts for PEM fuel cells-a tutorial on the fundamental characteristics and practical prop-erties of NSTF catalysts[J]. Ecs Transactions, 2012, 45(2):47-68.
[44] Zhang C, Yu H, Li Y, et al. Supported noble metals on Hydrogen-Treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells[J]. ChemSusChem, 2013, 6(4):659-666.
[45] Brady M P, Wang H, Yang B, et al. Growth of Cr-Nitrides on commer-cial Ni-Cr and Fe-Cr base alloys to protect PEMFC bipolar plates[J]. International Journal of Hydrogen Energy, 2007, 32(16):3778-3788.
[46] Fu Y, Hou M, Lin G, et al. Coated 316L stainless steel with CrxN film as bipolar plate for PEMFC prepared by pulsed bias arc ion plating[J]. Journal of Power Sources, 2008, 176(1):282-286.
[47] Fu Y, Lin G, Hou M, et al. Carbon-based films coated 316L stainless steel as bipolar plate for proton exchange membrane fuel cells[J]. Inter-national Journal of hydrogen energy, 2009, 34(1):405-409.
[48] 黄乃宝, 衣宝廉, 梁成浩. 聚苯胺改性钢在模PEMFC环境下的电化学行为[J]. 电源技术, 2007, (31):217-219.
[49] Zhang H, Lin G, Hou M, et al. CrN/Cr multilayer coating on 316L stainless steel as bipolar plates for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2012, 198:176-181.
文章导航

/