专题论文

电动汽车动力电池产业的发展

  • 肖成伟 ,
  • 汪继强
展开
  • 1. 中国电子科技集团公司第十八研究所, 天津 300384;
    2. 中国化学与物理电源行业协会, 天津 300384
肖成伟,研究员级高级工程师,研究方向为动力电池、关键原材料及评价技术,电子邮箱:xiaochengwei@126.com

收稿日期: 2016-02-03

  修回日期: 2016-02-22

  网络出版日期: 2016-04-14

基金资助

国家高技术研究发展计划(863计划)项目(2011AA11A234)

An overview of development status of traction battery industry for electric vehicles

  • XIAO Chengwei ,
  • WANG Jiqiang
Expand
  • 1. No. 18th Research Institute of China Electronics Technology Group Corporation, Tianjin 300384, China;
    2. China Industrial Association of Chemical and Physical Power Sources, Tianjin 300384, China

Received date: 2016-02-03

  Revised date: 2016-02-22

  Online published: 2016-04-14

摘要

动力电池作为电动汽车的核心关键零部件,其技术水平及产业发展对电动汽车的规模化应用意义重大。在研发方面,美国、日本、德国、韩国及中国分别制定了动力电池的国家发展规划,提出了动力电池技术的研发方向和相关指标;在产业方面,锂离子动力电池作为主流技术产品主要应用于纯电驱动汽车(包括纯电动汽车及插电式混合动力汽车)领域,中、日、韩3国电池企业是锂离子动力电池的主要供应商和竞争者,产品涉及不同的材料体系、不同的容量及不同的工艺路线,能量密度范围为89~245 (W·h)/kg,并形成一定的产业规模;在产业未来发展趋势方面,提出了锂离子动力电池预期实现产业化的材料体系及电池单体的相关技术指标,指出了动力电池产业面临的问题,表明在装备、材料、系统集成以及评价方面需要进一步加强。

本文引用格式

肖成伟 , 汪继强 . 电动汽车动力电池产业的发展[J]. 科技导报, 2016 , 34(6) : 74 -83 . DOI: 10.3981/j.issn.1000-7857.2016.06.008

Abstract

Traction battery, as a key component, plays an important role in the mass application of electric vehicles. In the field of its R&D, US, Japan, Germany, Korea and China have all formulated their national-level plans for traction batteries respectively. In the field of traction battery industrialization, lithium-ion battery is the mainstream product, and China, Japan and Korea are the three major suppliers and competitors. Their products involve different material chemistries, capacities and manufacturing processes, the energy density ranges from 89 to 245 (W·h)/kg, and mass production is realized. The category of material chemistry and related technical parameters have also been proposed for the future traction battery industrialization. Issues faced by manufacturing equipment, material chemistry, system integration and evaluation for the traction battery are pointed out at the end of this overview.

参考文献

[1] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(179):652-657.
[2] The USA Department of Energy. EV everywhere grand challenge blueprint[EB/OL].[2015-10-28]. http://www.energy.gov/sites/prod/files/2014/02/f8/eveverywhere_blueprint.pdf.
[3] Office of Energy Efficiency & Renewable Energy Under the USA Department of Energy. About EV everywhere[EB/OL].[2015-10-28]. http://www.energy.gov/eere/vehicles/ev-everywhere-grand-challengedoes-10-year-vision-plug-electric-vehicles.
[4] The Advanced Research Projects Agency-Energy (ARPA-E). BEEST program overview[EB/OL].[2015-10-28]. sites/default/files/documents/files/BEEST_programoverview.pdf.
[5] George Crabtree. The joint center for energy storage research:A new paradigm for battery research and development[C]//Proceedings of Physics of Sustainable Energy III:Using Energy Efficiently and Producing It Renewably, 2014. Berkeley CA, USA:AIP Conference Proceedings, 2014:1652-1660.
[6] James Miller. Energy storage:Current status and future trends[EB/OL].[2015-10-28]. https://ec.europa.eu/jrc/sites/default/files/events/20130926-eco-industries/20130926-eco-industries-miller.pdf.
[7] Takeshi Sato. R&D high-performance batteries for next-generation vehicles in NEDO[EB/OL].[2015-10-28]. http://www.itschina.org/UserFiles/2011-9/22/2011922155650100.pdf.
[8] New Energy and Industrial Technology Development Organization. NEDO secondary battery development roadmap 2013(Battery RM2013)[EB/OL].[2015-10-28]. http://www.nedo.go.jp/content/100535728.pdf.
[9] Nationale Plattform Elektromobilität. Interim report of thenational platform for electric mobility[EB/OL].[2015-10-28]. http://www.bmwi.de/English/Redaktion/Pdf/electro-mobility-report,property=pdf,bereich=bmwi2012,sprache=en,rwb=true.pdf.
[10] Fraunhofer Institute for Systems and Innovation Research ISI. Technology roadmap energy storagefor electric mobility 2030[EB/OL].[2015-10-28]. http://www.isi.fraunhofer.de/isi-wAssets/docs/t/en/Trm-esem-2030_en_web.pdf.
[11] Christophe Pillot. Battery market development for consumer electronics, automotive, and industrial:Materials requirements and trends[EB/OL].[2015-10-28]. http://www.avem.fr/docs/pdf/Avicennediapoxining.pdf.
[12] Noh H J, Youn S, Yoon C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2(x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233(1):121-130.
[13] Fu F, Xu G L, Wang Q, et al. Synthesis of single crystalline hexagonal nanobricks of LiNi1/3Co1/3Mn1/3O2 with high percentage of exposed {010} active facets as high rate performance cathode material for lithium-ion battery[J]. Journal of Materials Chemistry A, 2013, 1(12), 3860-3864.
[14] Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2(M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30):3112-3125.
[15] Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6] O2[J]. Journal of the American Chemical Society, 2006, 128(26):8694-8698.
[16] Qiao Q Q, Zhang H Z, Li G R, et al. Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li-Mn-PO4 as cathode for lithium-ion battery[J]. Journal of Materials Chemistry A, 2013, 1(17):5262-5268.
[17] Thackeray M M, David W I F, Bruce P G, et al. Lithium insertion into manganese spinels[J]. Material Research Bulletin, 1983, 18(4):461-472.
[18] Thackeray M M. Structural considerations of layered and spinel lithiated oxides for lithium ion batteries[J]. Journal of Electrochemical Society, 1995, 142(8):2558-2563.
[19] Julien C M. Mauger A. Review of 5-V electrodes for Li-ion batteries:Status and trends[J]. Ionics, 2013, 19(7):951-988.
[20] Liu D, Zhu W, Trottier J, et al. Spinel materials for high-voltage cathodes in Li-ion batteries[J]. RSC Advances, 2014, 4(1):154-167.
[21] Chen Z X, Qiu S, Cao Y L, et al. Surface-oriented and nanoflakestacked LiNi0.5Mn1.5O4 spinel for high-rate and long-cycle-life lithium ion batteries[J]. Journal of Materials Chemistry, 2012, 22(34):17768-17772.
[22] Ein-Eli Y, Koch V R. Chemical oxidation:a route to enhanced capacity in Li-ion graphite anodes[J]. Journal of Electrochemical Society, 1997, 144(9):2968-2973.
[23] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3):587-603.
[24] DeyA N. Electrochemical alloying of lithium in organic electrolytes[J]. Journal of Electrochemical Society, 1971, 118(10):1547-1549.
[25] 高鹏飞, 杨军. 锂离子电池硅复合负极材料研究进展[J]. 化学进展, 2011, 23(2):264-274.
[26] Yang Z G, Choi D, Kerisit S, et al. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides:A review[J]. Journal of Power Sources, 2009, 192(2):588-598.
文章导航

/