本刊专稿

超润滑:“零”摩擦的世界

  • 郑泉水 ,
  • 欧阳稳根 ,
  • 马明 ,
  • 张首沫 ,
  • 赵治华 ,
  • 董华来 ,
  • 林立
展开
  • 1. 清华大学微纳米力学与多学科交叉创新研究中心, 北京 100084;
    2. 清华大学工程力学系暨应用力学教育部重点实验室, 北京 100084;
    3. 清华大学机械工程系暨摩擦学国家重点实验室, 北京 100084;
    4. 清华大学航天航空学院, 北京 100084;
    5. 清华大学精密仪器系, 北京 100084
郑泉水,教授,研究方向为微纳米固-固界面和固-液界面的力学与物理及其在微纳器件和物体系中的应用、非均匀和各向异性材料的力学行为,电子信箱:zhengqs@tsinghua.edu.cn

收稿日期: 2016-04-28

  网络出版日期: 2016-06-13

基金资助

国家重大基础研究计划(973计划)项目(2013CB934200,2007CB936803);国家自然科学基金重点项目(10832005,10332020);国家自然科学基金创新群体项目(10121202);国家自然科学基金面上项目(11572173,10252001);唐仲英(中国)基金会项目(202031003);北京技术创新行动计划(2014-2017年)专项(Z151100003315008);清华大学自主科研计划项目(2014Z01007,2012Z01015)

摘要

绳子从他的指间松脱,就像上面涂了油一样。林恩·罗克罗斯以一种缓慢、从容、优雅的姿态,沿着没有摩擦力的镜面滑了下去。"这是美国科幻作家杰弗里·A·兰迪斯的作品《镜中人》中的片段,该作品呈现了主人公在落入一个"零"摩擦的镜面大坑中后靠着智慧自我拯救的故事。"零"摩擦这样一个奇妙的假设曾勾起许多科幻爱好者的无限遐想,成为诸多科幻作品描写的要点。近20多年来,"零"摩擦不再仅仅是科幻界的宠儿,也成为了科学家研究的热点,是纳米技术时代一个横跨物理、化学、力学、材料、机械、精密制造等诸多传统学科的交叉研究领域。科学家用"超润滑"(superlubricity)来形容两个界面之间摩擦力几乎为零的状态,有关概念于1990年提出,经历了2004年和2012-2013年实验方面的两次突破,其中中国学者做出了重要贡献。超润滑这样一种奇妙现象的原理是什么?如何被实验证实?"零"摩擦在哪些领域可能导致技术的突破、或催生前所未有的新技术?未来的主要挑战有哪些?本文针对这些问题,力图带给读者一个较清晰且激动人心的答案,并触发更多的奇思妙想和深入研究。

本文引用格式

郑泉水 , 欧阳稳根 , 马明 , 张首沫 , 赵治华 , 董华来 , 林立 . 超润滑:“零”摩擦的世界[J]. 科技导报, 2016 , 34(9) : 12 -26 . DOI: 10.3981/j.issn.1000-7857.2016.09.001

参考文献

[1] Perkins S. Ice proved cool way to move stones for Forbidden City[N/OL]. 2013-11-05. http://www.nature.com/news/ice-proved-cool-way-to-move-stonesfor-forbidden-city-1.14090.
[2] Fall A, Weber B, Pakpour M, et al. Sliding friction on wet and dry sand[J]. Physical Review Letters, 2014, 112(17):175502.
[3] Urbakh M, Klafter J, Gourdon D, et al. The nonlinear nature of friction[J]. Nature, 2004, 430(6999):525-528.
[4] Vanossi A, Manini N, Urbakh M, et al. Colloquium:Modeling friction:From nanoscale to mesoscale[J]. Reviews of Modern Physics, 2013, 85(2):529-552.
[5] Socoliuc A, Gnecco E, Maier S, et al. Atomic-scale control of friction by actuation of nanometer-sized contacts[J]. Science, 2006, 313(5784):207.
[6] Li Q, Tullis T E, Goldsby D, et al. Frictional ageing from interfacial bonding and the origins of rate and state friction[J]. Nature, 2011, 480(7376):233-236.
[7] Kawai S, Benassi A, Gnecco E, et al. Superlubricity of graphene nanoribbons on gold surfaces[J]. Science, 2016, 351(6276):957-961.
[8] Bylinskii A, Gangloff D, Vuletić V. Tuning friction atom-by-atom in an ion-crystal simulator[J]. Science, 2015, 348(6239):1115-1118.
[9] Choi J S, Kim J-S, Byun I-S, et al. Friction anisotropy:Driven domain imaging on exfoliated monolayer graphene[J]. Science, 2011, 333(6042):607-610.
[10] Ben-David O, Cohen G, Fineberg J. The dynamics of the onset of frictional slip[J]. Science, 2010, 330(6001):211-214.
[11] Holmberg K, Andersson P, Erdemir A. Global energy consumption due to friction in passenger cars[J]. Tribology International, 2012, 47:221-234.
[12] Erdemir A, Martin J M. Superlubricity[M]. Elsevier, 2007.
[13] Walraven J A. Failure mechanisms in MEMS[C]//International Test Conference. 2003:828-833.
[14] Zheng Q, Jiang B, Liu S, et al. Self-retracting motion of graphite microflakes[J]. Physical Review Letters, 2008, 100(6):067205.
[15] Szlufarska I, Chandross M, Carpick R W. Recent advances in single-asperity nanotribology[J]. Journal of Physics D:Applied Physics, 2008, 41(12):123001.
[16] Urbakh M, Meyer E. Nanotribology:The renaissance of friction[J]. Nature Materials, 2010, 9(1):8-10.
[17] Hirano M, Shinjo K. Atomistic locking and friction[J]. Physical Review B, 1990, 41(17):11837-11851.
[18] Shinjo K, Hirano M. Dynamics of friction:Superlubric state[J]. Surface Science, 1993, 283(1):473-478.
[19] 欧阳稳根. 结构超润滑新约化模型[D]. 北京:清华大学航天航空学院, 2016.
[20] Cahangirov S, Ciraci S. Superlubricity in Layered Nanostructures[M]//Gnecco E, Meyer E. Fundamentals of Friction and Wear on the Nanoscale. Cham:Springer International Publishing, 2015:463-487.
[21] Hirano M, Shinjo K, Kaneko R, et al. Anisotropy of frictional forces in muscovite mica[J]. Physical Review Letters, 1991, 67(19):2642-2645.
[22] Martin J, Donnet C, Le Mogne T, et al. Superlubricity of molybdenum disulphide[J]. Physical Review B, 1993, 48(14):10583-10586.
[23] Dienwiebel M, Verhoeven G S, Pradeep N, et al. Superlubricity of graphite[J]. Physical Review Letters, 2004, 92(12):126101.
[24] Verhoeven G S, Dienwiebel M, Frenken J W. Model calculations of superlubricity of graphite[J]. Physical Review B, 2004, 70(16):165418.
[25] Zheng Q, Liu Z. Experimental advances in superlubricity[J]. Friction, 2014, 2(2):182-192.
[26] Robinson P. Graphite super lube works at micron scale[EB/OL]. 2012-05-28. http://www.rsc.org/chemistryworld/2012/05/graphite-super-lube-works-mi-cron-scale.
[27] Müser M H. Structural lubricity:Role of dimension and symmetry[J]. Europhysics Letters, 2004, 66(1):97-103.
[28] Leiden University. ERC grant helps Joost Frenken on the road to superlubricity[EB/OL]. 2010-11-01. http://research.leiden.edu/news/erc-grant-helpsjoost-frencken-on-the-road-to-superlubricity.html.
[29] Erdemir A. Genesis of superlow friction and wear in diamondlike carbon films[J]. Tribology International, 2004, 37(11-12):1005-1012.
[30] Berman D, Deshmukh S A, Sankaranarayanan S K R S, et al. Macroscale superlubricity enabled by graphene nanoscroll formation[J]. Science, 2015, 348(6239):1118-1122.
[31] Penkov O, Kim H-J, Kim H-J, et al. Tribology of graphene:A review[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(3):577-585.
[32] Liu P, Liu Y, Yang Y, et al. Mechanism of Biological Liquid Superlubricity of Brasenia schreberi Mucilage[J]. Langmuir, 2014, 30(13):3811-3816.
[33] Li J, Zhang C, Luo J. Superlubricity achieved with mixtures of polyhydroxy alcohols and acids[J]. Langmuir, 2013, 29(17):5239-5245.
[34] Li J, Liu Y, Luo J, et al. Excellent Lubricating Behavior of Brasenia schreberi Mucilage[J]. Langmuir, 2012, 28(20):7797-7802.
[35] Luo J, Lu X, Wen S. Developments and unsolved problems in nano-lubrication[J]. Progress In Natural Science, 2001, 11(3):173-183.
[36] Ma ZZ, Zhang CH, Luo JB, et al. Superlubricity of a mixed aqueous solution[J]. Chinese Physics Letters, 2011, 28(5):056201.
[37] Chengbing W, Shengrong Y, Qi W, et al. Super-low friction and super-elastic hydrogenated carbon films originated from a unique fullerene-like nano-structure[J]. Nanotechnology, 2008, 19(22):225709.
[38] Wei L, Zhang B, Zhou Y, et al. Ultra-low friction of fluorine-doped hydrogenated carbon film with curved graphitic structure[J]. Surface And Interface Analysis, 2013, 45(8):1233-1237.
[39] Müser M H. Theoretical studies of superlubricity[M]//Gnecco E, Meyer E. Fundamentals of Friction and Wear on the Nanoscale. Cham:Springer Interna-tional Publishing, 2015:209-232.
[40] He G, Müser M H, Robbins M O. Adsorbed layers and the origin of static friction[J]. Science, 1999, 284(5420):1650-1652.
[41] Müser M H, Wenning L, Robbins M O. Simple microscopic theory of Amontons's laws for static friction[J]. Physical Review Letters, 2001, 86(7):1295-1298.
[42] Shen J, Liu G, Huang K, et al. Subnanometer Two-dimensional graphene oxide channels for ultrafast gas sieving[J]. ACS Nano, 2016, 10(3):3398-3409.
[43] Liu Z, Yang J, Grey F, et al. Observation of microscale superlubricity in graphite[J]. Physical Review Letters, 2012, 108(20):205503.
[44] Liu Z, Zhang S-M, Yang J-R, et al. Interlayer shear strength of single crystalline graphite[J]. Acta Mechanica Sinica, 2012, 28(4):978-982.
[45] Cartwright J. Nanomachines could benefit from superlubricity[EB/OL]. 2012-04-05. http://physicsworld.com/cws/article/news/2012/apr/05/nanomachinescould-benefit-from-superlubricity.
[46] Yang J, Liu Z, Grey F, et al. Observation of high-speed microscale superlubricity in graphite[J]. Physical Review Letters, 2013, 110(25):255504.
[47] Cumings J, Zettl A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes[J]. Science, 2000, 289(5479):602-604.
[48] Zheng Q, Jiang Q. Multiwalled carbon nanotubes as gigahertz oscillators[J]. Physical Review Letters, 2002, 88(4):45503.
[49] Koren E, Lörtscher E, Rawlings C, et al. Adhesion and friction in mesoscopic graphite contacts[J]. Science, 2015, 348(6235):679-683.
[50] Wang W, Dai S, Li X, et al. Measurement of the cleavage energy of graphite[J]. Nature communication, 2015, 6:7853.
[51] Liu Z, Bøggild P, Yang JR, et al. A graphite nanoeraser[J]. Nanotechnology, 2011, 22(26):265706.
[52] Zhang R, Zhang Y, Zhang Q, et al. Growth of half-meter long carbon nanotubes based on schulz-flory distribution[J]. ACS Nano, 2013, 7(7):6156-6161.
[53] Zhang R, Zhang Y, Zhang Q, et al. Optical visualization of individual ultralong carbon nanotubes by chemical vapour deposition of titanium dioxide nanoparticles[J]. Nature Communication, 2013, 4(4):1727.
[54] Zhang R, Ning Z, Zhang Y, et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions[J]. Nature Nanotechnolo-gy, 2013, 8(12):912-916.
[55] Vu C C, Zhang S, Li Q, et al. Observation of Normal Force-independent Superlubricity in Mesoscopic Graphite Contacts[J]. arXiv preprint arXiv:1602.02557, 2016.
[56] Dietzel D, Ritter C, Mönninghoff T, et al. Frictional Duality Observed during Nanoparticle Sliding[J]. Physical Review Letters, 2008, 101(12):125505.
[57] Dietzel D, Feldmann M, Schwarz U, et al. Scaling Laws of Structural Lubricity[J]. Physical Review Letters, 2013, 111(23):235502.
[58] Lee C, Li Q, Kalb W, et al. Frictional characteristics of atomically thin sheets[J]. Science, 2010, 328(5974):76-80.
[59] Deng Z, Smolyanitsky A, Li Q, et al. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale[J]. Nature Mate-rials, 2012, 11(12):1032-1037.
[60] Egberts P, Han G, Liu X Z, et al. Frictional Behavior of Atomically-Thin Sheets:Hexagonal-Shaped Graphene Islands Grown on Copper by Chemical Vapor Deposition[J]. ACS Nano, 2014, 8(5):5010-5021.
[61] Pawlak R, Ouyang W, Filippov A E, et al. Single-Molecule Tribology:Force Microscopy Manipulation of a Porphyrin Derivative on a Copper Surface[J]. ACS Nano, 2016, 10(1):713-722.
[62] Pierno M, Bruschi L, Mistura G, et al. Frictional transition from superlubric islands to pinned monolayers[J]. Nature Nanotechnology, 2015, 10(8):714-718.
[63] Varini N, Vanossi A, Guerra R, et al. Static friction scaling of physisorbed islands:the key is in the edge[J]. Nanoscale, 2015, 7(5):2093-2101.
[64] Kim W K, Falk M L. Atomic-scale simulations on the sliding of incommensurate surfaces:the breakdown of superlubricity[J]. Physical Review B, 2009, 80(23):235428.
[65] Van Wijk M, Dienwiebel M, Frenken J, et al. Superlubric to stick-slip sliding of incommensurate graphene flakes on graphite[J]. Physical Review B,2013, 88(23):235423.
[66] Filippov A E, Dienwiebel M, Frenken J W M, et al. Torque and twist against superlubricity[J]. Physical Review Letters, 2008, 100(4):046102.
[67] van den Ende J A, de Wijn A S, Fasolino A. The effect of temperature and velocity on superlubricity[J]. Journal of Physics:Condensed Matter, 2012, 24(44):445009.
[68] Ma M, Benassi A, Vanossi A, et al. Critical Length Limiting Superlow Friction[J]. Physical Review Letters, 2015, 114(5):055501.
[69] Ouyang W, Ma M, Zheng Q, et al. Frictional Properties of Nanojunctions Including Atomically Thin Sheets[J]. Nano Letters, 2016, 16(3):1878-1883.
[70] Marchon B, Olson T. Magnetic spacing trends:from LMR to PMR and beyond[J]. IEEE Transactions on Magnetics, 2009, 45(10):3608-3611.
[71] Wood R W. The feasibility of magnetic recording at 1 Terabit per square inch[J]. IEEE Transactions On Magnetics, 2000, 36(1):36-42.
[72] Wood R W, Miles J, Olson T. Recording technologies for terabit per square inch systems[J]. IEEE Transactions on Magnetics, 2002, 38(4):1711-1718.
[73] 郑泉水, 程曜, 刘益伦. 一种硬盘设备:中国. 201010115892[P]. 2010-08-14.
[74] 郑泉水, 张首沫. 读写接触式硬盘的磁头、硬盘设备及转移方法:中国. 103824566A[P]. 2014-05-28.
[75] Gamulya G, Kopteva T, Lebedeva I, et al. Effect of low temperatures on the wear mechanism of solid lubricant coatings in vacuum[J]. Wear, 1993, 160(2):351-359.
[76] Balanis C A. Antenna Theory:Analysis and Design[M]. Wiley, 2015.
[77] Tibert G. Deployable tensegrity structures for space applications[D]. Stockholm:Royal Institute of Technology, 2002.
[78] 胡海岩, 田强, 张伟, 等. 大型网架式可展开空间结构的非线性动力学与控制[J]. 力学进展, 2013, 43(4):390-414.
[79] Thomson M W, Marks G W, Hedgepeth J M. Light-weight reflector for concentrating radiation[P]. 1997.
[80] Attaway S W.The mechanics of friction in rope rescue[C]//International Technical Rescue Symposium, 1999:1-16.
[81] 李亚辉. 机床导轨爬行机理及抑制方法研究[D]. 秦皇岛:燕山大学, 2015.
[82] Li Lin, 张冬冬, 郑泉水. 电容式接触型位移测量传感器及传感系统:中国. 201610390990.3[P]. 2016-06-03.
[83] 林立. 电容式传感器及组合电容式位移测量传感系统:CN104677390A[P]. 2015-06-03.
[84] Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306(5696):666-669.
[85] Meyer J C, Geim A K, Katsnelson M, et al. The structure of suspended graphene sheets[J]. Nature, 2007, 446(7131):60-63.
[86] Geim A, Grigorieva I. Van der Waals heterostructures[J]. Nature, 2013, 499(7459):419-425.
[87] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
[88] Wang L F, Ma T B, Hu Y Z, et al. Superlubricity of two-dimensional fluorographene/MoS2 heterostructure:a first-principles study[J]. Nanotechnology, 2014, 25(38):385701.
[89] Leven I, Krepel D, Shemesh O, et al. Robust superlubricity in graphene/h-BN heterojunctions[J]. The Journal of Physical Chemistry Letters, 2013, 4(1):115-120.
[90] Hod O. The registry index:A quantitative measure of materials' interfacial commensurability[J]. Chemphyschem, 2013, 14(11):2376-2391.
[91] Boyd D A, Lin W H, Hsu C C, et al. Single-step deposition of high-mobility graphene at reduced temperatures[J]. Nature Communication, 2015, 6:6620.
[92] Lee J H, Lee E K, Joo W J, et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium[J]. Science, 2014, 344(6181):286-289.
[93] Ma M, Sokolov I M, Wang W, et al. Diffusion through bifurcations in oscillating nano-and microscale contacts:Fundamentals and applications[J]. Physi-cal Review X, 2015, 5(3):031020.
文章导航

/