研究论文

薄层稠油油藏径向钻孔热采开发数值模拟

  • 朱维耀 ,
  • 贾宝昆 ,
  • 岳明 ,
  • 郝爱刚 ,
  • 宋洪庆
展开
  • 1. 北京科技大学土木与环境工程学院, 北京 100083;
    2. 胜利油田鲁胜石油开发有限责任公司, 东营 257077
朱维耀,教授,研究方向为渗流力学与油气田开发,电子信箱:weiyaook@sina.com;贾宝昆(共同第一作者),硕士研究生,研究方向为渗流力学,电子邮箱:57714729@qq.com

收稿日期: 2015-08-24

  修回日期: 2015-12-30

  网络出版日期: 2016-06-13

基金资助

国家科技重大专项(2011ZX05010-002);中央高校基本科研业务费专项(FRF-TP-15-043A1)

Numerical simulation of radial drilling in thermal recovery and development of thin heavy oil reservoirs

  • ZHU Weiyao ,
  • JIA Baokun ,
  • YUE Ming ,
  • HAO Aigang ,
  • SONG Hongqing
Expand
  • 1. Civil and Environmental Engineering School, University of Science & Technology Beijing, Beijing 100083, China;
    2. Lusheng Petroleum Development Co., Ltd., Shengli Oil Field, Dongying 257077, China

Received date: 2015-08-24

  Revised date: 2015-12-30

  Online published: 2016-06-13

摘要

以径向钻孔技术应用于薄层稠油油藏热采开发为目标,采用基于等效渗流连续介质原理及局部网格加密技术的数值模拟方法,在较高的拟合精度基础上,研究了径向孔长度、径向孔平面夹角、径向孔数量等因素对薄层稠油油藏蒸汽吞吐采油产量的影响。结果表明,径向孔能够增加蒸汽波及范围和泄压面积,有效提升采油产量;径向孔长度增加时采油产量逐渐增加但增幅逐渐减小,径向孔长度的最优范围为100~120 m;储层同一平面分布的径向孔,孔间夹角较大时相互干扰作用较弱,增产效果较好;同一平面分布的径向孔数量增加时,径向孔之间的夹角逐渐减小,相互干扰作用逐渐增强,产量增幅逐渐变小,当以平均夹角分布4条径向孔时可获得明显的增产效果。

本文引用格式

朱维耀 , 贾宝昆 , 岳明 , 郝爱刚 , 宋洪庆 . 薄层稠油油藏径向钻孔热采开发数值模拟[J]. 科技导报, 2016 , 34(9) : 108 -113 . DOI: 10.3981/j.issn.1000-7857.2016.09.014

Abstract

To apply the radial drilling technique to thermal recovery and development of thin heavy oil reservoirs, a simulation study based on the equivalent continuum principle and local grid refinement technology is carried out. On the basis of historic matching of a higher fitting precision, the influences of the factors of length, plane angle and the quantity of the radial hole on oil production are studied. The results indicate the followings. The radial holes can increase the scope of steam and the area of pressure release and can enhance the production effectively; the oil production gradually increases with the increase of the radial hole length, but the increase rate decreases, with the optimal range of length of the radial hole being 100 to 120 m; a large angle of the distribution of the radial holes in the same plane in the reservoir has weak interference and production grows well; when the number of the radial holes in the same plane increases and the angle between the radial holes gradually decreases, mutual interference gradually strengthens and the output growth gradually declines; and the average angle distribution of four radial holes can obtain an obvious effect on oil production.

参考文献

[1] 周卫东, 师伟, 李罗鹏. 径向水平钻孔技术研究进展[J]. 石油矿场机械, 2012, 41(4):1-6. Zhou Weidong, Shi Wei, Li Luopeng. Advances of techniques of radial horizontal drilling for boring hole[J]. Oil Field Equipment, 2012, 41(4):1-6.
[2] Cirigliano R A, Talavera Blacutt J F. First experience in the application of radial perforation technology in deep wells[C]. Latin American & Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 15-18 April, 2007.
[3] Bruni M A, Biasotti J H, Salomone G D. Radial drilling in Argentina[C]. Latin American & Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, April 15-18, 2007.
[4] Omrcen B, Brkic V, Dickinson W. Applicationand results of petro jet multilateral drilling in croatia[R]. Richardson, USA:Society of Petroleum Engineers, 2001.
[5] 刘合, 王峰, 王毓才, 等. 现代油气井射孔技术发展现状与展望[J]. 石油勘探与开发, 2014, 41(6):731-737. Liu He, Wang Feng, Wang Yucai, et al. Oil well perforation technology:status and prospects[J]. Petroleum Exploration and Development, 2014, 41(6):731-737.
[6] Li Y, Wang C, Shi L, et al. Application and development of drilling and completion of the ultrashort-radius radial well by high pressure jet flow techniques[C]. International Oil and Gas Conference and Exhibition in China, Beijing, China, 7-10 November, 2000.
[7] Oursegov S, Petrov N. Design and initial performance of pilot cyclic steam stimulations of vertical wells with radial horizontal bores in lowpermeable heavy oil carbonates[C]. SPE Russian Oil and Gas Technical Conference and Exhibition, Moscow, Russia, October 28-30, 2008.
[8] 张毅, 李根生, 熊伟, 等. 高压水射流深穿透射孔增产机理研究[J]. 石油大学学报:自然科学版, 2004, 28(2):38-41. Zhang Yi, Li Gensheng, Xiong Wei, et al. Stimulation mechanism of oil well using high-pressure water jet deep-penetrating perforation technique[J]. Journal of the University of Petroleum, China:Edition of Natural Science, 2004, 28(2):38-41.
[9] Guo R, Li G, Huang Z, et al. Theoretical and experimental study of the pulling force of jet bits in radial drilling technology[J]. Petroleum Science, 2009, 6(4):395-399.
[10] 唐亮田, 李晓军, 薛巨丰. 低渗透砂砾岩油藏径向钻孔技术优化研究及应用[J]. 天然气地球科学, 2014, 25(1):113-117. Tang Liangtian, Li Xiaojun, Xue Jufeng. Research and application of radial drilling technology in low permeability sandstone and conglomerate reservoir[J]. Natural Gas Geoscience, 2014, 25(1):113-117.
[11] 崔传智, 王秀坤, 杨勇, 等. 低渗透油藏高含水期层间径向钻孔油藏工程优化研究[J]. 油气地质与采收率, 2014, 21(5):61-64. Cui Chuanzhi, Wang Xiukun, Yang Yong, et al. Optimization of radial drilling branch number and length in low permeability reservoirs during high water cut period[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(5):61-64.
[12] 朱桂林, 王学忠. 准噶尔盆地春风油田薄浅层超稠油水平井蒸汽驱试验[J]. 科技导报, 2014, 32(31):55-60. Zhu Guilin, Wang Xuezhong. Horizontal steam flooding pilot test for thin shallow super heavy oil of chunfengoilfield in junggarbasin[J]. Science & Technology Review, 2014, 32(31):55-60.
[13] 张巧莹. 深井薄层稠油油藏水平井注采参数优化设计[J]. 断块油气田, 2012, 19(1):53-56. Zhang Qiaoying. Optimization of injection and production parameters on horizontal well of thin heavy oil reservoir in deep well[J]. Fault-Block Oil & Gas Field, 2012, 19(1):53-56.
[14] 苏云河, 杜志敏, 陈小凡, 等. 高含水油藏动态局部网格加密技术[J]. 石油学报, 2010, 31(1):84-86. Su Yunhe, Du Zhimin, Chen Xiaofan, et al. Dynamic local grid refinement technology for high water cut reservoir[J]. Acta Petrolei Sinica, 2010, 31(1):84-86.
[15] Maihöfer M, Ruprecht A. A local grid refinement algorithm on modern high-performancecomputers[C]//ParallelComputationalFluidDynamics-Advanced Numerical Methods, Software and Applications. Amsterdam, Holland:Elsevier, 2003:105-112.
[16] Pruess K, Garcia J. A systematic approach to local grid refinement in geothermal reservoir simulation[C]. World Geothermal Congress, Kyushu, Japan, May 28-31, 2000.
[17] 程强, 魏敬超, 李立峰. 等效渗透率在底水油藏水平井数值模拟中的应用[J]. 油气藏评价与开发, 2014, 4(2):34-37. Cheng Qiang, Wei Jingchao, Li Lifeng. Application of equivalent permeability in horizontal well numerical simulation of bottom water reservoir[J]. Reservoir Evaluation and Development, 2014, 4(2):34-37.
[18] 王臻, 左建平, 戴瑛. 裂隙单元修正等效渗透率模型及其验证[J]. 岩石力学与工程学报, 2013, 32(4):728-733. Wang Zhen, Zuo Jianping, Dai Ying. A modified equivalent permeability model of fracture element and its verification[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4):728-733.
[19] 吴秀田, 田树宝, 张鹏, 等. 水力射流深穿透射孔产能分析及参数优化[J]. 石油钻采工艺, 2010, 32(5):74-78. Wu Xiutian, Tian Shubao, Zhang Peng, et al. Productivity analysis and parameter optimization for deep hydraulic jet perforation wells[J]. Oil Drilling& Production Technology, 2010, 32(5):74-78.
文章导航

/