光合作用是绿色植物(包括藻类)利用太阳光能把二氧化碳和水合成有机化合物并释放出氧气的过程(图1),是地球上最大规模的能量和物质转换工程,是几乎一切生命生存和发展的物质基础,被诺贝尔奖基金委员会评为“地球上最重要的化学反应”。
[1] 武维华. 植物生理学[M]. 北京: 科学出版社, 2003: 117.
[2] 匡廷云. 光合作用原初光能转化过程的原理与调控[M]. 南京: 江苏科学技术出版社, 2003: 1-4.
[3] Croce R, van Amerongen H. Natural strategies for photosynthetic light harvesting[J]. Nature Chemical Biology, 2014(10): 492-501.
[4] Miyashita H, Ikemoto H, Kurano N, et al. Chlorophyll d as a major pigment[J]. Nature, 1996, 383: 402.
[5] Chen M, Schliep M, Willows R D, et al. A red-shifted chlorophyll[J]. Science, 2010, 329(5997): 1318-1319.
[6] Loughlin P, Lin Y K, Chen M. Chlorophyll d and Acaryochloris marina: Current status[J]. Photosynthesis Research, 2013, 116(2): 277-293.
[7] Govindjee, Kern J F, Messinger J, et al. Photosystem II[M]//Encyclopedia of Life Sciences (ELS). Hoboken, New Jersey: John Wiley & Sons, 2010.
[8] Larry Orr and Govindjee. Photosynthesisonline[J]. Photosynth Research, 2010, 105: 167-200.
[9] Croce R, van Amerongen H. Light-harvesting in photosystem I[J]. Photosynthesis Research, 2013, 116: 153-166.
[10] Nelson N, Ben-Shem A. The complex architecture of oxygenicphotosynthesis[J]. Nature Reviews Molecular Cell Biology, 2004, 5: 971-982.
[11] Kuang T Y, Argyroudiakoyunoglou J H, Nakatani H Y, et al. Origin of the long-wavelength fluorescence emission band (77-K) from photosystem-I[J]. Archives of Biochemistry and Biophysics, 1984, 235: 618-627.
[12] Qin X C, Wang K B, Chen X B, et al. Rapid purification of photosystem I chlorophyll-binding proteins by differential centrifugation and vertical rotor[J]. Photosynthesis Research, 2006, 90: 195-204.
[13] Qin X C, Wang W D, Wang K B, et al. Isolation and characteristics of the PSI-LHCI-LHCII supercomplex under high light[J]. Photochemistry and Photobiology, 2011, 87: 143-150.
[14] Qin X C, Wang W D, Chang L J, et al. Isolation and characterization of a PSI-LHCI super-complex and its sub-complexes from a siphonaceous marine green alga, Bryopsis Corticulans[J]. Photosynthesis Research, 2015, 123: 61-76.
[15] Qin X, Suga M, Kuang T, et al. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex[J]. Science, 2015, 348(6238): 989- 995.
[16] 秦晓春, Suga Michihiro, 匡廷云,等. 高等植物光系统I-捕光天线I(PSI-LHCI)超分子复合物的晶体结构和能量传递途径[J/OL]. doi: 10.1360/ N972016-00217.
[17] Suga M, Qin X, Kuang T, et al. Structure and energy transfer pathways of the plant photosystem I-LHCI supercomplex[J]. Current Opinion in Structural Biology, 2016, 39: 46-53.
[18] Croce R. A close view of photosystem I[J]. Science, 2015, 348(6238): 970-971.
[19] Liu Z F, Yan H C, Wang K B, et al. Crystal structure of spinach major light-harvesting complex at 2.72Å resolution[J]. Nature, 2004, 428: 287-292.
[20] Pan X W, Li M, Wan T, et al. Structural insights into energy regulation of light-harvesting complex CP29 from spinach[J]. Nature Structural & Molecular Biology, 2011, 18(3): 309-U394.
[21] Harnessing solar energy for the production of clean fuels[J]. http://www.esf.org/fileadmin/Public_documents/Publications/CleanSolarFuel_01.pdf
[22] Jordan P, Fromme P, Witt H T, et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5Å resolution[J]. Nature, 2001, 411(6840): 909- 917.
[23] Umena Y, Kawakami K, Shen J R, et al. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å[J]. Nature, 2011, 473(7345): 55-60.
[24] Barber J, Andersson B. Revealing the blueprint of photosynthesis[J]. Nature, 1994, 370(6484): 31-34.
[25] Achenbach J. Scientists are closing in on the ultimate secrets of plant photosynthesis[EB/OL]. 2015-05-28. http://www.washingtonpost.com/news/speaking-of-science/wp/2015/05/28/scientists-are-closing-in-on-the-ultimate-secrets-of-plant-photosynthesis-with-implications-for-solar-energy-and-agriculture/.