[1] Chang T Y, Chang C C, Ohgami N, et al. Cholesterol sensing, trafficking, and esterification[J]. Annual Review of Cell and Developmental Biology, 2006,22: 129-157.
[2] Maxfield F R, Tabas I. Role of cholesterol and lipid organization in disease[J]. Nature, 2005, 438: 612-621.
[3] Russell D W. The enzymes, regulation, and genetics of bile acid synthesis[J]. Annual Review of Biochemistry, 2003, 72: 137-174.
[4] Payne A H, Hales D B. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones[J]. Endocrine Reviews, 2004, 25:947-970.
[5] Porter J A, Young K E, Beachy P A. Cholesterol modification of hedgehog signaling proteins in animal development[J]. Science, 1996, 274: 255-259.
[6] Carstea E D, Morris J A, Coleman K G, et al. Niemann-Pick C1 disease gene: Homology to mediators of cholesterol homeostasis[J]. Science, 1997, 277:228-231.
[7] Loftus S K, Morris J A, Carstea E D, et al. Murine model of Niemann-Pick C disease: Mutation in a cholesterol homeostasis gene[J]. Science, 1997, 277:232-235.
[8] Grundy S M. Absorption and metabolism of dietary cholesterol[J]. Annual Review of Nutrition, 1983, 3: 71-96.
[9] Espenshade P J, Hughes A L. Regulation of sterol synthesis in eukaryotes[J]. Annual Review of Genetics, 2007, 41: 401-427.
[10] Goldstein J L, Brown M S. Regulation of the mevalonate pathway[J]. Nature, 1990, 343: 425-430.
[11] De Bose-Boyd R A. Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase[J]. Cell Research, 2008, 18: 609-621.
[12] Brown M S, Goldstein J L. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor[J]. Cell,1997, 89: 331-340.
[13] Horton J D, Goldstein J L, Brown M S. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver[J]. Journal of Clinical Investigation, 2002, 109: 1125-1131.
[14] 柳童斐, 宋保亮. 胆固醇合成途径的负反馈调控机制[J]. 中国细胞生物学学报, 2013, 35(4): 401-409.
[15] Tang J J, Li J G, Qi W, et al. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques[J]. Cell Metabolism, 2011, 13: 44-56.
[16] Song B L, Sever N, DeBose-Boyd R A. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase[J]. Molecular Cell, 2005, 19: 829-840.
[17] Cao J, Wang J, Qi W, et al. Ufd1 is a cofactor of gp78 and plays a key role in cholesterol metabolism by regulating the stability of HMG-CoA reductase[J]. Cell Metabolism, 2007, 6: 115-128.
[18] Lee J N, Song B, DeBose-Boyd R A, et al. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78[J]. Journal of Biological Chemistry, 2006, 281: 39308-39315.
[19] Liu T F, Tang J J, Li P S, et al. Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis[J]. Cell Metabolism, 2012, 16: 213-225.
[20] Wang D Q. Regulation of intestinal cholesterol absorption[J]. Annual Review of Physiology, 2007, 69: 221-248.
[21] Altmann S W, Davis H R, Zhu L J, Jr, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption[J]. Science, 2004, 303:1201-1204.
[22] Wang J, Chu B B, Ge L, et al. Membrane topology of human NPC1L1, a key protein in enterohepatic cholesterol absorption[J]. Journal of Lipid Research, 2009, 50: 1653-1662.
[23] Xie C, Zhou Z S, Li N, et al. Ezetimibe blocks the internalization of NPC1L1 and cholesterol in mouse small intestine[J]. Journal of Lipid Research,2012, 53: 2092-2101.
[24] Rosenblum S B, Huynh T, Afonso A, et al. Discovery of 1-(4-fluorophenyl)-(3R)-[3-(4-fluorophenyl)-(3S)-hydroxypropyl]-(4S)-(4 -hydroxyphenyl)-2-azetidinone (SCH 58235): A designed, potent, orally active inhibitor of cholesterol absorption[J]. Journal of Medicinal Chemistry, 1998, 41: 973-980.
[25] Xie C, Li N, Chen Z J, et al. The small GTPase Cdc42 interacts with Niemann-Pick C1-like 1 (NPC1L1) and controls its movement from endocytic recycling compartment to plasma membrane in a cholesterol-dependent manner[J]. Journal of Biological Chemistry, 2011, 286: 35933-35942.
[26] Ge L, Qi W, Wang L J, et al. Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake[J]. PNAS, 2011, 108: 551-556.
[27] Li P S, Fu Z Y, Zhang Y Y, et al. The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1[J]. Nature Medicine, 2014, 20: 80-86.
[28] Ge L, Wang J, Qi W, et al. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1[J]. Cell Metabolism, 2008, 7: 508-519.
[29] Wang L J, Wang J, Li N, et al. Molecular characterization of the NPC1L1 variants identified from cholesterol low absorbers[J]. Journal of BiologicalChemistry, 2011, 286: 7397-7408.
[30] Anderson R A, Joyce C, Davis M, et al. Identification of a form of acyl-CoA:cholesterol acyltransferase specific to liver and intestine in nonhuman primates[J]. Journal of Biological Chemistry, 1998, 273: 26747-26754.
[31] Wetterau J R, Aggerbeck L P, Bouma M E, et al. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia[J]. Science, 1992, 258: 999-1001.
[32] Tontonoz P, Mangelsdorf D J. Liver X receptor signaling pathways in cardiovascular disease[J]. Molecular Endocrinology, 2003, 17: 985-993.
[33] Dikkers A, Tietge U J. Biliary cholesterol secretion: More than a simple ABC[J]. World Journal of Gastroenterology, 2010, 16: 5936-5945.
[34] Brown M S, Goldstein J L. A receptor-mediated pathway for cholesterol homeostasis[J]. Science, 1986, 232: 34-47.
[35] Kwon H J, Abi-Mosleh L, Wang M L, et al. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol[J]. Cell, 2009, 137: 1213-1224.
[36] Chu B B, Liao Y C, Qi W, et al. Cholesterol transport through Lysosome-peroxisome membrane contacts[J]. Cell, 2015, 161: 291-306.