为比较风场上下不一致时计算大气弥散因子的差异,使用CAirDos 模式计算福建某沿海核电厂的长期大气弥散因子,并与CEIRA 模式的计算结果进行对比,结果显示两种模式计算出的最大长期弥散因子出现的方位相同,均对应于低层最多风向(东北东,23.2%)的下风向,而次大值出现的方位不同。其中,CAirDos 计算的长期大气弥散因子的次大值出现在低层(10 m)次多风向(北东,10.4%)的下风向;而CEIRA 模式计算的长期大气弥散因子的次大值出现在高层(80 m)主导风向(北,16.5%)的下风向。CAirDos 使用的是单层风速数据,高层风速经风廓线修正得到,风向保持不变,保证了高、低层风向的一致,而CEIRA 需要使用高层及低层两层的风速数据,当高层及低层风向不一致时,将影响长期大气弥散因子的计算结果。
This paper uses the CAirDos model to calculate the long-term air dispersion factor of a coastal nuclear power plant in Fujian Province, and the results are compared with those of the CEIRA model. It is shown that, with the two models, the maximum values are in the same direction, but the sub-maximum values are not. The second maximum value calculated by the CAirdos model corresponds to the downwind in the secondary prevailing wind direction(NE,10.4% ) at the 10 meters height, while that calculated by the CEIRA model corresponds to the downwind in the prevailing wind direction(N,16.5%) at the 80 meters height. One layer wind data are used in the CAirDos model to make sure that the wind direction in the high layer is consistent with that in the lower layer. The wind speed in the high layer is revised by the wind pofile in the low layer, so the wind direction is consistent with that in the low layer. In the CEIRA model, on the other hand, the wind data in the two layers are both used. When the wind directions in the two layers are inconsistent, the results of the long term atmospheric dispersion factor will be affected.
[1] 方栋, 李红. 核设施正常工况下放射性气态流出物对公众影响评价的 现状与建议[J]. 辐射防护, 2000, 20(6): 333-340. Fang Dong, Li Hong. Status and suggestions about the assessment of public impacts of radioactive gaseous effluents under normal condition of nuclear facilities[J]. Radiation Protection, 2000, 20(6): 333-340.
[2] 姚仁太. 核电厂年均大气弥散因子估算中有关参数和修正方法的影 响分析[J]. 辐射防护通讯, 2000, 20(6): 1-7. Yao Rentai. Analysis of relevant parameters and modified methods in estimating annual mean atmospheric dispersion factor for nuclear power plant[J]. Radiation Protection Bulletin, 2000, 20(6): 1-7.
[3] Pecha P, Pechova E. An unconventional adaptation of a classical Gaussian plume dispersion scheme for the fast assessment of external irradiation from a radioactive cloud[J]. Atmospheric Environment, 2014, 89: 298-308.
[4] Zhang Qiong, Guo Ruiping, Zhang Chunming, et al. Radioactive airborne effluents and the environmental impact assessment of CAP1400 nuclear power plant under normal operation[J]. Nuclear Engineering and Design, 2014, 280: 579-585.
[5] Leroy C, Maro D, Hebert D, et al. A study of the atmospheric dispersion of a high release of krypton-85 above a complex coastal terrain, comparison with the predictions of Gaussian models (Briggs, Doury, ADMS4)[J]. Journal of Environmental Radioactivity, 2010, 101: 937-944.
[6] 陈晓秋. CAIRDOS的模式与参数[R]. 北京: 环境保护部核与辐射安全 中心, 2004. Chen Xiaoqiu. CAIRDOS Program Instructions Book[R]. Beijing: Nuclear and Radiation Safety Center, 2004.
[7] 孙呈志. 为验证遵守辐射防护规定的剂量限值, 计算气态和液态放射 性物质排放时引起的照射剂量采用的模式、假定和参数[R]. 北京: 国 家核事故应急办公室, 1995. Sun Chengzhi. Models, assumptions and data for estimating the exposure to gaseous and liquid radioactive effluents for the purpose of evaluating compliance with the dose limit according to radiation protection regulations[R]. Beijing: National Nuclear Accident Emergency Office, 1995.
[8] 李智, 李华. 核电站气载放射性流出物环境辐射剂量计算[J]. 环境科 学与技术, 2010, 33(6): 119-123. Li Zhi, Li Hua. Calculation of environmental radiation dose resulted from radionuclides in gaseous effluent from daya bay nuclear power plant[J]. Enviromental Science & Technology, 2010, 33(6): 119-123.
[9] 方栋, 张洪猷. 核设施正常工况气载放射性排出物辐射后果计算程序 比对[J]. 辐射防护, 1997, 17(4): 260-268. Fang Dong, Zhang Hongyou. Intercomparision of calculation program for the radiological consequences of normal airborne effluent from a nuclear facilities[J]. Radiation Protection, 1997, 17(4): 260-268.
[10] Moore R E, Baes III C F, McDowell-Boyer L M, et al. AIRDOS-EPA: A computerized methodology for estimating environmental concentrations and dose to man from airborne releases of radionuclides[R]. Washington D.C.: U S Environmental Protection Agency, 1979.
[11] United States Nuclear Regulatory Commission. Methods for estimating atmospheric transport and dispersion of gaseous effluents in routine discharges from light-water-cooled reactors: Regulatory guide 1.111 [S]. Washington D.C.: United States Nuclear Regulatory Commission, 1977.
[12] 潘自强, 王志波, 陈竹舟, 等. 中国核工业三十年辐射环境质量评价 [M]. 北京: 中国原子能出版社, 1990: 30-45. Pan Ziqiang, Wang Zhibo, Chen Zhuzhou, et al. Radiological environmental quality assessment of the nuclear industry in China over the past 30 years[M]. Beijing: Atomic Energy Press, 1990: 30-45.
[13] 胡二邦, 陈家宜. 核电厂大气扩散及其环境影响评价[M]. 北京: 原子 能出版社, 1999: 170-179. Hu Erbang, Chen Jiayi. The atmospheric diffusion of nuclear power plant and its environmental impact assessment[M]. Beijing: Atomic Energy Press, 1999: 170-179.
[14] 吕明华, 范丹, 郝宏伟, 等. 核设施气载放射性排出物辐射后果计算 模型及正常工况评价程序比对[C]//中国辐射防护学会2014年学术 年会论文集. 太原: 中国辐射防护学会, 2014: 453-458. Lü Minghua, Fan Dan, Hao Hongwei, et al. Intercomparision of calculation program for the radiological consequences of normal airborne effluent from a nuclear facilities and some calculation models[C]//China Proceedings of National Annual Conference on Society of Radiation Protection 2014. Taiyuan: Society of Radiation Protection, 2014: 453- 458.