[1] Cisco. 思科VNI调研报告预测从2014到2019年IP流量将增至三倍; 主要增长驱动因素包括日益增加的移动访问和对视频服务的需求[EB/OL].[2016-04-28]. http://www.cisco.com/web/CN/aboutcisco/news_info/china_news/2015/05_28.html. CISCO. The CISCO VNI research report predicts that from 2014 to 2019 IP traffic will be increased to three times; the major growth driv-ers include increasing mobile access and demand for video services[EB/OL].[2016-04-28]. http://www.cisco.com/web/CN/aboutcisco/news_info/china_news/2015/05_28.html.
[2] 鲁义轩. 超高速传输时代迫近——明年有望启动100 G现网试验[J]. 通信世界, 2012(17):17. Lu Yixuan. Ultra high speed transmission times approaching next year is expected to start 100 G network testing[J]. Communications World Weekly, 2012(17):17.
[3] Renaudier J, Rios-Muller R, Schmalen L, et al. 1 Tb/s transceiver span-ning over just three 50 GHz frequency slots for long-haul systems[C]//39th European Conference and Exhibition on Optical Communication (ECOC 2013). London:IET, 2013:242-1244.
[4] Renaudier J, Ghazisaeidi A, Tran P, et al. Long-haul transmission of 1 Tb/s superchannels, 175 GHz spaced, over SSMF using Nyquist pulse shaping and flex-grid WDM architecture[C]//European Conference and Exhibition on Optical Communication. London:IET, 2013:819-821.
[5] Renaudier J, Muller R R, Schmalen L, et al. 1 Tb/s PDM-32QAM su-perchannel transmission at 6.7 b/s/Hz over SSMF and 150 GHz-grid ROADMs[C]//2014 The European Conference on Optical Communica-tion (ECOC). Cannes:IEEE, 2014. Doi:10.1109/ECOC.2014.6963854.
[6] Yu J, Zhou X. 16, 107 Gb/s 12.5 GHz-spaced PDM-36QAM transmis-sion over 400 km of standard single-mode fiber[J]. IEEE Photonics Technology Letters, 2010, 22(17):1312-1314.
[7] Yao J. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3):314-335.
[8] Laurencio P, Vargues H, Avó R, et al. Generation and transmission of millimeter wave signals employing optical frequency quadrupling[C]//201012th International Conference on Transparent Optical Networks. Munich:IEEE, 2010. Doi:10.1109/ICTON.2010.5548961.
[9] Taher K A, Majumder S P. Minimizing the effect of cross phase modula-tion in WDM optical transmission system[C]//Proceedings of the 12th In-ternational Conference on Advanced Communication Technology. Phoe-nix Park:IEEE, 2010:708-711.
[10] Charbonnier B, Saliou F, Guyader B L, et al. Versatile customers, do we have FTTH solutions?[C]//2014 The European Conference on Opti-cal Communication (ECOC). Cannes:IEEE, 2014. Doi:10.1109/ECOC.2014.6964208.
[11] Kachris C, Tomkos I. A survey on optical Interconnects for data cen-ters[J]. IEEE Communications Surveys & Tutorials, 2011, PP(99):1-16.
[12] Vlasov Y A. Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100 G[J]. IEEE Communications Magazine, 2012, 50(2):s67-s72.
[13] Zhou J, Yan Y, Cai Z, et al. A cost-effective and efficient scheme for optical OFDM in short-range IM/DD systems[J]. IEEE Photonics Tech-nology Letters, 2014, 26(13):1372-1374.
[14] Yan W, Li L, Liu B, et al. 80 km IM-DD Transmission for 100 Gb/s per lane enabled by DMT and nonlinearity management[C]//Optical Fi-ber Communication Conference. San Francisco, CA:IEEE, 2014. Doi:10.1364/OFC.2014.M2I.4.
[15] Zhu J, Ingham J D, Von Lindeiner J B, et al. MIMO DWDM system using uncooled DFB lasers with adaptive laser bias control and post-photodetection crosstalk cancellation[J]. Journal of Lightwave Technolo-gy, 2014, 32(21):3974-3981.
[16] Vujicic V, Anandarajah P M, Browning C, et al. Optical multicarrier based IM/DD DWDM-SSB-OFDM access networks with SOAs for power budget extension[C]//European Conference on Optical Communi-cation. Cannes:IEEE, 2014. Doi:10.1109/ECOC.2014.6964030.
[17] Zhou R, Anandarajah P M, Pascual D G, et al. Monolithically integrat-ed 2-section lasers for injection locked gain switched comb generation[C]//Optical Fiber Communications Conference and Exhibition (OFC), 2014. San Francisco, CA:IEEE, 2014:1-3.
[18] Martin E, Shao T, Anandarajah P, et al. Impact and reduction of fibre nonlinearities in a 25 Gb/s OFDM 60 GHz radio over fibre system[C]//International Topical Meeting on Microwave Photonics. Sendai:IEEE, 2014:446-449.
[19] Shao T, Zhou R, Pascual M D G, et al. Integrated gain switched comb source for 100 Gb/s WDM-SSB-DD-OFDM system[J]. Journal of Lightwave Technology, 2015, 33(17):1.
[20] Igarashi K, Tsuritani T, Morita I, et al. Super-Nyquist-WDM transmis-sion over 7,326 km seven-core fiber with capacity-distance product of 1.03 Exabit/s·km[J]. Optics Express, 2014, 22(2):1220-1228.
[21] Sui C, Hraimel B, Zhang X, et al. Performance evaluation of MBOFDM Ultra-Wideband over fiber transmission using a low cost Elec-tro-Absorption Modulator integrated laser[C]//Microwave Photonics. Montreal, QC:IEEE, 2010:70-73.
[22] Qian D, Huang M F, Ip E, et al. 101.7 Tb/s (370×294 Gb/s) PDM-128QAM-OFDM transmission over 3×55 km SSMF using pilot-based phase noise mitigation[C]//Optical Fiber Communication Conference and Exposition. Los Angeles, CA:IEEE, 2011:1-3.
[23] Xia T J, Wellbrock G A, Tanaka A, et al. High capacity field trials of 40.5 Tb/s for LH distance of 1,822 km and 54.2 Tb/s for regional dis-tance of 634 km[C]//Optical Fiber Communication Conference and Ex-position and the National Fiber Optic Engineers Conference. Anaheim, CA:IEEE, 2013:1-3.
[24] Nakazawa M, Okamoto S, Omiya T, et al. 256-QAM (64 Gb/s) coher-ent optical transmission over 160 km with an optical bandwidth of 5.4 GHz[J]. IEEE Photonics Technology Letters, 2010, 22(3):185-187.
[25] Cai J X, Batshon H G, Zhang H, et al. 25 Tb/s transmission over 5530 km using 16QAM at 5.2 b/s/Hz spectral efficiency[J]. Optics Ex-press, 2013, 21(2):1555-1560.
[26] Zhang H, Batshon H G, Foursa D, et al. 30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency[C]//Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference. Anaheim, CA:IEEE, 2013. Doi:10.1364/OFC.2013.OTu2B.3.
[27] Beppu S, Yoshida M, Kasai K, et al. 2048 QAM (66 Gbit/s) singlecarrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz[J]. Optics Express, 2015, 23(4):4960-4969.
[28] Dong Z, Li X, Yu J, et al. 6×128 Gb/s Nyquist-WDM PDM-16QAM generation and transmission over 1200 km SMF-28 with SE of 7.47 b/s/Hz[J]. Journal of Lightwave Technology, 2012, 30(24):4000-4005.
[29] Yu J, Dong Z, Chi N. 30 Tb/s (3×12.84 Tb/s) signal transmission over 320 km using PDM 64-QAM modulation[C]//Optical Fiber Communi-cation Conference and Exposition. Los Angeles, CA:IEEE, 2012:1-3.
[30] Shams H, Perry P, Anandarajah P, et al. Electro-optical generation and distribution of ultrawideband signals based on the gain switching technique[J]. Journal of Optical Communications & Networking, 2010, 2(3):122-130.
[31] Wu R, Supradeepa V R, Long C M, et al. Generation of very flat fre-quency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms[J]. Optics Letters, 2010, 35(19):3234-3236.
[32] Latkowski S, Xu Y, Murdoch S, et al. Optical comb generation and ex-pansion by, gain switched discrete mode laser diode[C]//The European Conference on Lasers and Electro-Optics. Munich:IEEE, 2011. Doi:10.1109/CLEOE.2011.5942982.
[33] Igarashi K, Takeshima K, Tsuritani T, et al. 110.9 Tbit/s SDM trans-mission over 6370 km using a full C-band seven-core EDFA[J]. Op-tics Express, 2013, 21(15):18053-18060.
[34] Takahashi H, Tsuritani T, de Gabory E L, et al. First demonstration of MC-EDFA-repeatered SDM transmission of 40×128 Gbit/s PDMQPSK signals per core over 6,160 km 7-core MCF[J]. Optics Express, 2013, 21(1):789-795.
[35] Mizuno T, Takara H, Sano A, et al. Dense space division multiplexed transmission over multi-core and multi-mode fiber[C]//Optical Fiber Communication Conference, 2015. Los Angeles, CA:IEEE. Doi:10.1364/OFC.2015.Th1D.2.
[36] Cvijetic N, Ip E, Prasad N, et al. Experimental time and frequency do-main MIMO channel matrix characterization versus distance for 6×28Gbaud QPSK transmission over 40×25 km few mode fiber[C]//Opti-cal Fiber Communication Conference. Doi:10.1364/OFC.2014.Th1J.3.
[37] Sano A, Takara H, Kobayashi T, et al. Petabit/s transmission using multicore fibers[C]//Optical Fiber Communications Conference and Ex-hibition. San Francisco, CA:IEEE, 2014. Doi:10.1364/OFC.2014. Tu2J.1.
[38] Sleiffer V A, Jung Y, Veljanovski V, et al. 73.7 Tb/s (96×3×256 Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MMEDFA.[J]. Optics Express, 2012, 20(26):428-38.
[39] van Uden R G H, Amezcua-Correa R, Antonio-Lopez E, et al. 1 km hole-assisted few-mode multi-core fiber 32QAM WDM transmission[C]//ECOC'14. Cannes, France:IEEE, 2014.
[40] Sakaguchi J, Puttnam B J, Klaus W, et al. 19-core fiber transmission of 19×100×Optical Fiber Communication Conference. Optical Society of America, Los Angeles, California United States, March 4-8, 2012.
[41] Asif R, Ye F, Morioka T. λ-selection strategy in C+L band 1-Pbit/s(448 WDM/19-core/128 Gbit/s/channel) flex-grid space division multi-plexed transmission[C]//European Conference on Networks and Com-munications. Pairs:IEEE, 2015.
[42] Ye F, Tu J, Saitoh K, et al. Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers.[J]. Op-tics Express, 2014, 22(19):23007-23018.
[43] Asif R, Ye F, Morioka T. Dynamics of 1.12 Tbit/s wdm flex-coherent super-channels in multi-core fiber transmission[C]. Asia Communica-tions and Photonics Conference 2014, Shanghai China, November 11-14, 2014.
[44] Takara H, Sano A, Kobayashi T, et al. 1.01 Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4 b/s/Hz aggregate spectral efficiency[C]. European Conference and Exhibition on Optical Communication 2012, Amsterdam Netherlands, September 16-20, 2012.
[45] Huang Y K, Zhang Y, Cheng X, et al. 1.05 Pb/s transmission with 109b/s/Hz spectral efficiency using hybrid single-and few-mode cores[C]. Frontiers in Optics, 2012, Rochester, NY, October 14-18, 2012.
[46] Mizuno T, Kobayashi T, Takara H, et al. 12-core×3-mode dense space division multiplexed transmission over 40 km employing multicarrier signals with parallel MIMO equalization[C]//Optical Fiber Com-munications Conference and Exhibition. San Francisco, CA:IEEE, 2014. Doi:10.1364/OFC.2014.Th5B.2.
[47] Wang J, Li S, Luo M, et al. N-dimentional multiplexing link with 1.036 Pbit/s transmission capacity and 112.6 bit/s/Hz spectral efficien-cy using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes[C]//Optical Communication (ECOC), 2014 European Conference on. Cannes:IEEE, 2014. Doi:10.1109/ECOC.2014.6963934
[48] Yue Y, Bozinovic N, Ren Y, et al. 1.6 Tbit/s muxing, transmission and demuxing through 1.1 km of vortex fiber carrying 2 OAM beams each with 10 wavelength channels[C]//Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference. Anaheim, CA:IEEE, 2013:1-3.
[49] Huang H, Xie G, Yan Y, et al. 100 Tbit/s free-space data link using orbital angular momentum mode division multiplexing combined with wavelength division multiplexing[C]//Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference. Anaheim, CA:IEEE, 2013. Doi:10.1364/OFC.2013. OTh4G.5.