专题论文

大容量光传输系统发展现状

  • 刘博 ,
  • 李丽楠
展开
  • 北京邮电大学, 信息光子学与光通信国家重点实验室, 北京 100876
刘博,讲师,研究方向为融合网络和光传输,电子信箱:dabaotoo@qq.com

收稿日期: 2016-06-30

  修回日期: 2016-07-28

  网络出版日期: 2016-09-21

基金资助

国家高技术研究发展计划(863计划)项目(2013AA013403,2015AA015501,2015AA015502,2015AA015504,2015AA016901);国家自然科学基金项目(61425022,61522501,61307086,61475024,61275158,61201151,61275074,61205066);北京市科技新星计划项目(Z141101001814048);北京优秀博士学位论文培育基金项目(20121001302);高等学校博士学科点专项科研基金项目(20120005110003,20120005120007);中央高校基本科研业务费专项(2014RC0203)

Development status of large-capacity optical transmission systems

  • LIU Bo ,
  • LI Linan
Expand
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China

Received date: 2016-06-30

  Revised date: 2016-07-28

  Online published: 2016-09-21

摘要

综述了大容量光传输系统的发展现状及最新技术研究进展。理论和实验研究表明,由于光纤的非线性及放大器的带宽等限制,通信容量已经接近了单模光纤的传输极限。因此,光纤通信的发展需要克服单载波传输中高速电器件的限制瓶颈。本文总结了多载波技术的产生方案:用频分复用(OFDM)或奈奎斯特波分复用(Nyquist-WDM)技术提高频谱的利用率,增加信道容量实现P bit/s甚至更高传输速率。另一方面需要从研究光纤本身的角度出发,在考虑成本效益和能源效率的前提下充分利用光纤的空间维度。空分复用技术(多模、多芯)及角动量复用技术(OAM)将成为未来超越单模光纤的容量极限、大幅度提高光纤传输容量的研究重点。

本文引用格式

刘博 , 李丽楠 . 大容量光传输系统发展现状[J]. 科技导报, 2016 , 34(16) : 20 -33 . DOI: 10.3981/j.issn.1000-7857.2016.16.002

Abstract

This paper reviews the development and latest research progress of large-capacity optical transmission systems. Theoretical and experimental studies have shown that due to the limitations of the fiber nonlinear effect and the amplifier bandwidth, communication capacity is close to the limit of single-mode fiber transmission. Therefore, on the one hand, the development of optical fiber communication needs to overcome the bottleneck of high-speed electrical devices in single carrier transmission. So this paper investigates the multi-carrier generation schemes like orthogonal frequency division multiplexing (OFDM) technology or Nyquist wavelength division multiplexing (Nyquist-WDM) technology, which can improve spectrum efficiency and increase channel capacity to achieve Pbit/s rate or even higher. On the other hand,we study from the perspective of the optical fiber itself how to take full advantage of the spatial dimension of the fiber in consideration of cost-effectiveness and energy efficiency. It is shown that space division multiplexing (multi-mode, multi-core) and angular momentum multiplexing (OAM) will be the focus of future research to overcome the limit of the capacity of single-mode fiber and greatly improve optical transmission capacity.

参考文献

[1] Cisco. 思科VNI调研报告预测从2014到2019年IP流量将增至三倍; 主要增长驱动因素包括日益增加的移动访问和对视频服务的需求[EB/OL].[2016-04-28]. http://www.cisco.com/web/CN/aboutcisco/news_info/china_news/2015/05_28.html. CISCO. The CISCO VNI research report predicts that from 2014 to 2019 IP traffic will be increased to three times; the major growth driv-ers include increasing mobile access and demand for video services[EB/OL].[2016-04-28]. http://www.cisco.com/web/CN/aboutcisco/news_info/china_news/2015/05_28.html.
[2] 鲁义轩. 超高速传输时代迫近——明年有望启动100 G现网试验[J]. 通信世界, 2012(17):17. Lu Yixuan. Ultra high speed transmission times approaching next year is expected to start 100 G network testing[J]. Communications World Weekly, 2012(17):17.
[3] Renaudier J, Rios-Muller R, Schmalen L, et al. 1 Tb/s transceiver span-ning over just three 50 GHz frequency slots for long-haul systems[C]//39th European Conference and Exhibition on Optical Communication (ECOC 2013). London:IET, 2013:242-1244.
[4] Renaudier J, Ghazisaeidi A, Tran P, et al. Long-haul transmission of 1 Tb/s superchannels, 175 GHz spaced, over SSMF using Nyquist pulse shaping and flex-grid WDM architecture[C]//European Conference and Exhibition on Optical Communication. London:IET, 2013:819-821.
[5] Renaudier J, Muller R R, Schmalen L, et al. 1 Tb/s PDM-32QAM su-perchannel transmission at 6.7 b/s/Hz over SSMF and 150 GHz-grid ROADMs[C]//2014 The European Conference on Optical Communica-tion (ECOC). Cannes:IEEE, 2014. Doi:10.1109/ECOC.2014.6963854.
[6] Yu J, Zhou X. 16, 107 Gb/s 12.5 GHz-spaced PDM-36QAM transmis-sion over 400 km of standard single-mode fiber[J]. IEEE Photonics Technology Letters, 2010, 22(17):1312-1314.
[7] Yao J. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3):314-335.
[8] Laurencio P, Vargues H, Avó R, et al. Generation and transmission of millimeter wave signals employing optical frequency quadrupling[C]//201012th International Conference on Transparent Optical Networks. Munich:IEEE, 2010. Doi:10.1109/ICTON.2010.5548961.
[9] Taher K A, Majumder S P. Minimizing the effect of cross phase modula-tion in WDM optical transmission system[C]//Proceedings of the 12th In-ternational Conference on Advanced Communication Technology. Phoe-nix Park:IEEE, 2010:708-711.
[10] Charbonnier B, Saliou F, Guyader B L, et al. Versatile customers, do we have FTTH solutions?[C]//2014 The European Conference on Opti-cal Communication (ECOC). Cannes:IEEE, 2014. Doi:10.1109/ECOC.2014.6964208.
[11] Kachris C, Tomkos I. A survey on optical Interconnects for data cen-ters[J]. IEEE Communications Surveys & Tutorials, 2011, PP(99):1-16.
[12] Vlasov Y A. Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100 G[J]. IEEE Communications Magazine, 2012, 50(2):s67-s72.
[13] Zhou J, Yan Y, Cai Z, et al. A cost-effective and efficient scheme for optical OFDM in short-range IM/DD systems[J]. IEEE Photonics Tech-nology Letters, 2014, 26(13):1372-1374.
[14] Yan W, Li L, Liu B, et al. 80 km IM-DD Transmission for 100 Gb/s per lane enabled by DMT and nonlinearity management[C]//Optical Fi-ber Communication Conference. San Francisco, CA:IEEE, 2014. Doi:10.1364/OFC.2014.M2I.4.
[15] Zhu J, Ingham J D, Von Lindeiner J B, et al. MIMO DWDM system using uncooled DFB lasers with adaptive laser bias control and post-photodetection crosstalk cancellation[J]. Journal of Lightwave Technolo-gy, 2014, 32(21):3974-3981.
[16] Vujicic V, Anandarajah P M, Browning C, et al. Optical multicarrier based IM/DD DWDM-SSB-OFDM access networks with SOAs for power budget extension[C]//European Conference on Optical Communi-cation. Cannes:IEEE, 2014. Doi:10.1109/ECOC.2014.6964030.
[17] Zhou R, Anandarajah P M, Pascual D G, et al. Monolithically integrat-ed 2-section lasers for injection locked gain switched comb generation[C]//Optical Fiber Communications Conference and Exhibition (OFC), 2014. San Francisco, CA:IEEE, 2014:1-3.
[18] Martin E, Shao T, Anandarajah P, et al. Impact and reduction of fibre nonlinearities in a 25 Gb/s OFDM 60 GHz radio over fibre system[C]//International Topical Meeting on Microwave Photonics. Sendai:IEEE, 2014:446-449.
[19] Shao T, Zhou R, Pascual M D G, et al. Integrated gain switched comb source for 100 Gb/s WDM-SSB-DD-OFDM system[J]. Journal of Lightwave Technology, 2015, 33(17):1.
[20] Igarashi K, Tsuritani T, Morita I, et al. Super-Nyquist-WDM transmis-sion over 7,326 km seven-core fiber with capacity-distance product of 1.03 Exabit/s·km[J]. Optics Express, 2014, 22(2):1220-1228.
[21] Sui C, Hraimel B, Zhang X, et al. Performance evaluation of MBOFDM Ultra-Wideband over fiber transmission using a low cost Elec-tro-Absorption Modulator integrated laser[C]//Microwave Photonics. Montreal, QC:IEEE, 2010:70-73.
[22] Qian D, Huang M F, Ip E, et al. 101.7 Tb/s (370×294 Gb/s) PDM-128QAM-OFDM transmission over 3×55 km SSMF using pilot-based phase noise mitigation[C]//Optical Fiber Communication Conference and Exposition. Los Angeles, CA:IEEE, 2011:1-3.
[23] Xia T J, Wellbrock G A, Tanaka A, et al. High capacity field trials of 40.5 Tb/s for LH distance of 1,822 km and 54.2 Tb/s for regional dis-tance of 634 km[C]//Optical Fiber Communication Conference and Ex-position and the National Fiber Optic Engineers Conference. Anaheim, CA:IEEE, 2013:1-3.
[24] Nakazawa M, Okamoto S, Omiya T, et al. 256-QAM (64 Gb/s) coher-ent optical transmission over 160 km with an optical bandwidth of 5.4 GHz[J]. IEEE Photonics Technology Letters, 2010, 22(3):185-187.
[25] Cai J X, Batshon H G, Zhang H, et al. 25 Tb/s transmission over 5530 km using 16QAM at 5.2 b/s/Hz spectral efficiency[J]. Optics Ex-press, 2013, 21(2):1555-1560.
[26] Zhang H, Batshon H G, Foursa D, et al. 30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency[C]//Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference. Anaheim, CA:IEEE, 2013. Doi:10.1364/OFC.2013.OTu2B.3.
[27] Beppu S, Yoshida M, Kasai K, et al. 2048 QAM (66 Gbit/s) singlecarrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz[J]. Optics Express, 2015, 23(4):4960-4969.
[28] Dong Z, Li X, Yu J, et al. 6×128 Gb/s Nyquist-WDM PDM-16QAM generation and transmission over 1200 km SMF-28 with SE of 7.47 b/s/Hz[J]. Journal of Lightwave Technology, 2012, 30(24):4000-4005.
[29] Yu J, Dong Z, Chi N. 30 Tb/s (3×12.84 Tb/s) signal transmission over 320 km using PDM 64-QAM modulation[C]//Optical Fiber Communi-cation Conference and Exposition. Los Angeles, CA:IEEE, 2012:1-3.
[30] Shams H, Perry P, Anandarajah P, et al. Electro-optical generation and distribution of ultrawideband signals based on the gain switching technique[J]. Journal of Optical Communications & Networking, 2010, 2(3):122-130.
[31] Wu R, Supradeepa V R, Long C M, et al. Generation of very flat fre-quency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms[J]. Optics Letters, 2010, 35(19):3234-3236.
[32] Latkowski S, Xu Y, Murdoch S, et al. Optical comb generation and ex-pansion by, gain switched discrete mode laser diode[C]//The European Conference on Lasers and Electro-Optics. Munich:IEEE, 2011. Doi:10.1109/CLEOE.2011.5942982.
[33] Igarashi K, Takeshima K, Tsuritani T, et al. 110.9 Tbit/s SDM trans-mission over 6370 km using a full C-band seven-core EDFA[J]. Op-tics Express, 2013, 21(15):18053-18060.
[34] Takahashi H, Tsuritani T, de Gabory E L, et al. First demonstration of MC-EDFA-repeatered SDM transmission of 40×128 Gbit/s PDMQPSK signals per core over 6,160 km 7-core MCF[J]. Optics Express, 2013, 21(1):789-795.
[35] Mizuno T, Takara H, Sano A, et al. Dense space division multiplexed transmission over multi-core and multi-mode fiber[C]//Optical Fiber Communication Conference, 2015. Los Angeles, CA:IEEE. Doi:10.1364/OFC.2015.Th1D.2.
[36] Cvijetic N, Ip E, Prasad N, et al. Experimental time and frequency do-main MIMO channel matrix characterization versus distance for 6×28Gbaud QPSK transmission over 40×25 km few mode fiber[C]//Opti-cal Fiber Communication Conference. Doi:10.1364/OFC.2014.Th1J.3.
[37] Sano A, Takara H, Kobayashi T, et al. Petabit/s transmission using multicore fibers[C]//Optical Fiber Communications Conference and Ex-hibition. San Francisco, CA:IEEE, 2014. Doi:10.1364/OFC.2014. Tu2J.1.
[38] Sleiffer V A, Jung Y, Veljanovski V, et al. 73.7 Tb/s (96×3×256 Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MMEDFA.[J]. Optics Express, 2012, 20(26):428-38.
[39] van Uden R G H, Amezcua-Correa R, Antonio-Lopez E, et al. 1 km hole-assisted few-mode multi-core fiber 32QAM WDM transmission[C]//ECOC'14. Cannes, France:IEEE, 2014.
[40] Sakaguchi J, Puttnam B J, Klaus W, et al. 19-core fiber transmission of 19×100×Optical Fiber Communication Conference. Optical Society of America, Los Angeles, California United States, March 4-8, 2012.
[41] Asif R, Ye F, Morioka T. λ-selection strategy in C+L band 1-Pbit/s(448 WDM/19-core/128 Gbit/s/channel) flex-grid space division multi-plexed transmission[C]//European Conference on Networks and Com-munications. Pairs:IEEE, 2015.
[42] Ye F, Tu J, Saitoh K, et al. Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers.[J]. Op-tics Express, 2014, 22(19):23007-23018.
[43] Asif R, Ye F, Morioka T. Dynamics of 1.12 Tbit/s wdm flex-coherent super-channels in multi-core fiber transmission[C]. Asia Communica-tions and Photonics Conference 2014, Shanghai China, November 11-14, 2014.
[44] Takara H, Sano A, Kobayashi T, et al. 1.01 Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4 b/s/Hz aggregate spectral efficiency[C]. European Conference and Exhibition on Optical Communication 2012, Amsterdam Netherlands, September 16-20, 2012.
[45] Huang Y K, Zhang Y, Cheng X, et al. 1.05 Pb/s transmission with 109b/s/Hz spectral efficiency using hybrid single-and few-mode cores[C]. Frontiers in Optics, 2012, Rochester, NY, October 14-18, 2012.
[46] Mizuno T, Kobayashi T, Takara H, et al. 12-core×3-mode dense space division multiplexed transmission over 40 km employing multicarrier signals with parallel MIMO equalization[C]//Optical Fiber Com-munications Conference and Exhibition. San Francisco, CA:IEEE, 2014. Doi:10.1364/OFC.2014.Th5B.2.
[47] Wang J, Li S, Luo M, et al. N-dimentional multiplexing link with 1.036 Pbit/s transmission capacity and 112.6 bit/s/Hz spectral efficien-cy using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes[C]//Optical Communication (ECOC), 2014 European Conference on. Cannes:IEEE, 2014. Doi:10.1109/ECOC.2014.6963934
[48] Yue Y, Bozinovic N, Ren Y, et al. 1.6 Tbit/s muxing, transmission and demuxing through 1.1 km of vortex fiber carrying 2 OAM beams each with 10 wavelength channels[C]//Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference. Anaheim, CA:IEEE, 2013:1-3.
[49] Huang H, Xie G, Yan Y, et al. 100 Tbit/s free-space data link using orbital angular momentum mode division multiplexing combined with wavelength division multiplexing[C]//Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference. Anaheim, CA:IEEE, 2013. Doi:10.1364/OFC.2013. OTh4G.5.
文章导航

/