[1] Matsui Y, Murai H, Arahira S, et al. 30 GHz Bandwidth 1.55μm strain-compensated InGaAlAs-InGaAsP MQW laser[J]. Photonics Technology Letters IEEE, 1997, 9(1):25-27.
[2] Matsui Y, H Murai, S Arahira, et al. Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers[J]. IEEE Journal of Quantum Electronics, 1998, 34(10):1970-1978.
[3] Kobayashi W, Ito T, Yamanaka T, et al. 50 Gb/s direct modulation of 1.3μm InGaAlAs-based DFB laser with ridge waveguide[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4):1500908.
[4] Yamada H, Okuda T, Torikai T. Distributed-feedback laser with improved analog modulation distortion characteristics and method for fabricating the same:US 5394429[P]. 1995-02-28.
[5] Okuda T, Yamada H, Torikai T, et al. Novel partially corrugated waveguide laser diode with low modulation distortion characteristics for subcarrier multiplexing[J]. Electronics Letters, 1994, 30(11):862-863.
[6] Childs R B, O'Byrne V A. Predistortion linearization of directly modulated DFB lasers and external modulators for AM video transmission[C]//Optical Fiber Communication Conference. San Francisco:Optical Society of America, 1990. Doi:10.1364/OFC.1990.WH6.
[7] Meng X J, Tai C, Wu M C. Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking[J]. IEEE Transactions on Microwave Theory & Techniques, 1999, 47(7):1172-1176.
[8] Jung T, Sung H K, Wu M C, et al. Demonstration of monolithic optical injection locking using a two section DFB laser[C]//Conference on Lasers and Electro-Optics. Baltimore:IEEE, 2003:295-296.
[9] Lau E K, Zhao X, Sung H K, et al. Strong optical injection-locked semiconductor lasers demonstrating > 100 GHz resonance frequencies and 80 GHz intrinsic bandwidths[J]. Optics Express, 2008, 16(9):6609-18.
[10] Chow W W, Yang Z S, Vawter G A, et al. Modulation Response improvement with isolator-free injection-locking[J]. IEEE Photonics Technology Letters, 2009, 21(13):839-841.
[11] Tauke-Pedretti A, Vawter G A, Skogen E J, et al. Mutual injection locking of monolithically integrated coupled-cavity DBR lasers[J]. IEEE Photonics Technology Letters, 2011, 23(13):908-910.
[12] Browning C, Shi K, Latkowski S, et al. Performance improvement of 10 Gb/s direct modulation OFDM by optical injection using monolithically integrated discrete mode lasers[J]. Optics Express, 2011, 19(26):289-94.
[13] Xie L, Man J W, Wang B J, et al. 24 GHz directly modulated DFB laser modules for analog applications[J]. IEEE Photonics Technology Letters, 2012, 24(24):407-409.
[14] Tsuzuki K, Shibata Y, Kikuchi N, et al. Full C-Band tunable DFB laser array copackaged with InP mach-zehnder modulator for dwdm optical communication systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3):521-527.
[15] Welch D F, Dominic V G, Kish F A, et al. Photonic integrated circuit (PIC) chips:US 7519246 B2[P]. 2009-04-14.
[16] Wang L A, Lo Y H, Gozdz A S, et al. Integrated four-wavelength DFB laser array with 10 Gb/s speed and 5 nm continuous tuning range[J]. IEEE Photonics Technology Letters, 1992, 4(4):318-320.
[17] Hillmer H, Klepser B. Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and tilted waveguides[J]. IEEE Journal of Quantum Electronics, 2004, 40(10):1377-1383.
[18] Ryu S W, Kim J H. Multi-wavelength semiconductor laser array and method for fabricating the same:US 6594298 B2[P]. 2003-07-15.
[19] Mazed M A. Techniques for fabricating and packaging multi-wavelength semiconductor laser array devices (chips) and their applications in system architectures:US 6411642[P]. 2002-06-25.
[20] Li J, Wang H, Chen X, et al. Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology.[J]. Optics Express, 2009, 17(7):5240-5245.
[21] Zhao J, Chen X, Zhou N, et al. Experimental demonstration of a 16-channel DFB laser array based on nanoimprint technology[J]. Semiconductor Science & Technology, 2013, 28(5):50-51.
[22] Zhang C, Liang S, Zhu H, et al. A modified SAG technique for the fabrication of DWDM DFB laser arrays with highly uniform wavelength spacings[J]. Optics Express, 2012, 20(28):29620-29625.
[23] 陈向飞. 基于重构-等效啁啾技术制备半导体激光器的方法及装置:101034788 A[P]. 2007-09-12. Chen Xiangfei. The reconstruction method of equivalent chirp technology and its organs cup semiconductor device based on:101034788 A[P]. 2007-09-12.
[24] Chen X. Distributed feedback semiconductor laser based on reconstruction-equivalent-chirp technology and the manufacture method of the same:US 7873089 B2[P]. 2011-01-18
[25] Shi Y, Chen X, Zhou Y, et al. Experimental demonstration of eight-wavelength distributed feedback semiconductor laser array using equivalent phase shift.[J]. Optics Letters, 2012, 37(16):3315-3317.
[26] Shi Y, Chen X, Zhou Y, et al. Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique[J]. Optics Express, 2012, 20(16):17374-17379.
[27] Ito H, Kodama S, Muramoto Y, et al. High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(4):709-727.
[28] Williams K J, Tulchinsky D A, Campbell J C. High-power photodiodes[C]//IEEE International Topical Meeting on Microwave Photonics. Victoria, BC:IEEE, 2007:50-51.
[29] Tulchinsky D A, Li X, Li N, et al. High-saturation current wide-bandwidth photodetectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(4):702-708.
[30] Shi J W, Wu Y S, Hsieh S H, et al. High-power and high-responsivity photodiode for long-haul and short-reach fiber communication[C]//SPIE Proceedings Vol. 6013:Optoelectronic Devices:Physics, Fabrication, and Application Ⅱ. Boston, MA:SPIE, 2005. Doi:10.1117/12.632404.
[31] Li Z, Pan H P, Chen H, et al. High-saturation-current modified uni-traveling-carrier photodiode with cliff layer[J]. IEEE Journal of Quantum Electronics, 2010, 46(5):626-632.
[32] Shi J W, Kuo F M, Bowers J E. Design and analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50Ω load for highpower performance[J]. IEEE Photonics Technology Letters, 2012, 24(7):533-535.
[33] Chtioui M, Lelarge F, Enard A, et al. High responsivity and high power UTC and MUTC GaInAs-InP photodiodes[J]. IEEE Photonics Technology Letters, 2012, 24(4):318-320.
[34] Cole C, Huebner B, Johnson J. Photonic integration for high-volume, low-cost applications[J]. IEEE Communications Magazine, 2009, 47(3):S16-S22.
[35] Kanazawa S, Fujisawa T, Ohki A, et al. A compact EADFB laser array module for a future 100 Gb/s ethernet transceiver[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5):1191-1197.
[36] Man J W, Qi X Q, Xie L, et al. High bandwidth optical transceiver module for analog optical link in Ku band[J]. IEEE Photonics Technology Letters, 2012, 24(3):212-214.
[37] Xie L, Man J W, Wang B J, et al. 24 GHz directly modulated DFB laser modules for analog applications[J]. IEEE Photonics Technology Letters, 2012, 24(24):407-409.
[38] Medeiros M C R, Avó R, Laurêncio P, et al. RoFnet-reconfigurable radio over fiber network architecture overview[J]. Journal of Telecommunications & Information Technology, 2009.
[39] Parker M C, Walker S D, Llorente R, et al. Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project[J]. Optoelectronics Iet, 2010, 4(6):247-259.
[40] Wake D, Nkansah A, Gomes N J. Radio over fiber link design for next generation wireless systems[J]. Journal of Lightwave Technology, 2010, 28(16):2456-2464.
[41] Zou Q, Merghem K, Azouigui S, et al. Feedback-resistant p-type doped InAs/InP quantum-dash distributed feedback lasers for isolator-free 10 Gb/s transmission at 1.55μm[J]. Applied Physics Letters, 2010, 97(23):231115-231115-3.
[42] Gutierrez F Jr, Parrish K, Rappaport T S. On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems[C]//Proceedings of the 28th IEEE conference on Global telecommunications. Piscataway, NJ:IEEE, 2009:3285-3291.
[43] Ng'Oma A, Sauer M, Annunziata F, et al. Simple multi-Gbps 60 GHz radio-over-fiber links employing optical and electrical data up-conversion and feed-forward equalization[C]//Optical Fiber Communication-Incudes Post Deadline Papers, 2009. San Diego, CA:IEEE, 2009:1-3.