专题论文

光载无线电核心技术研究进展

  • 罗飚 ,
  • 王任凡 ,
  • 胡海 ,
  • 李灯熬 ,
  • 赵菊敏
展开
  • 1. 武汉光迅科技股份有限公司, 武汉 430074;
    2. 深圳清华大学研究院, 深圳 518000;
    3. 太原理工大学信息工程学院, 太原 030024
罗飚,高级工程师,研究方向为RoF芯片设计,电子信箱:biao.luo@accelink.com

收稿日期: 2016-06-30

  修回日期: 2016-07-18

  网络出版日期: 2016-09-21

基金资助

国家高技术研究发展计划(863计划)项目(2015AA016901)

Review of RoF core technologies

  • LUO Biao ,
  • WANG Renfan ,
  • HU Hai ,
  • LI Deng'ao ,
  • ZHAO Jumin
Expand
  • 1. Accelink Technologies Co. Ltd., Wuhan 430074, China;
    2. Research Institute of Tsinghua University in Shenzhen, Shenzhen 518000, China;
    3. Taiyuan University of Technology, College of Information Engineering, Taiyuan 030024, China

Received date: 2016-06-30

  Revised date: 2016-07-18

  Online published: 2016-09-21

摘要

光载无线电(RoF)技术融合了微波射频技术和光子技术,充分体现了光通信“高速”和无线通信“移动”的技术特色,可大幅降低无线网络的能耗,代表了未来光网络和无线网络的发展方向。本文从RoF技术的国内外研究与应用现状出发,在分析RoF涉及的关键技术基础上,探讨了目前RoF技术面临的挑战,展望了其未来的发展方向。

本文引用格式

罗飚 , 王任凡 , 胡海 , 李灯熬 , 赵菊敏 . 光载无线电核心技术研究进展[J]. 科技导报, 2016 , 34(16) : 45 -53 . DOI: 10.3981/j.issn.1000-7857.2016.16.004

Abstract

RoF(radio-over-fiber) technology combines microwave radiofrequency technology with photonics technology, and simultaneously embodies the technical features of "high speed" of optical communication and "mobility" of wireless communication. It greatly reduces the energy consumption of wireless network, representing the future development direction of optical networks and wireless networks. This paper begins with the domestic and foreign state of the RoF technology research and application, then focuses on the challenges that the ROF technology currently faces, and finally gives its future R/D direction on the basis of investigation of ROF key technologies.

参考文献

[1] Matsui Y, Murai H, Arahira S, et al. 30 GHz Bandwidth 1.55μm strain-compensated InGaAlAs-InGaAsP MQW laser[J]. Photonics Technology Letters IEEE, 1997, 9(1):25-27.
[2] Matsui Y, H Murai, S Arahira, et al. Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers[J]. IEEE Journal of Quantum Electronics, 1998, 34(10):1970-1978.
[3] Kobayashi W, Ito T, Yamanaka T, et al. 50 Gb/s direct modulation of 1.3μm InGaAlAs-based DFB laser with ridge waveguide[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4):1500908.
[4] Yamada H, Okuda T, Torikai T. Distributed-feedback laser with improved analog modulation distortion characteristics and method for fabricating the same:US 5394429[P]. 1995-02-28.
[5] Okuda T, Yamada H, Torikai T, et al. Novel partially corrugated waveguide laser diode with low modulation distortion characteristics for subcarrier multiplexing[J]. Electronics Letters, 1994, 30(11):862-863.
[6] Childs R B, O'Byrne V A. Predistortion linearization of directly modulated DFB lasers and external modulators for AM video transmission[C]//Optical Fiber Communication Conference. San Francisco:Optical Society of America, 1990. Doi:10.1364/OFC.1990.WH6.
[7] Meng X J, Tai C, Wu M C. Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking[J]. IEEE Transactions on Microwave Theory & Techniques, 1999, 47(7):1172-1176.
[8] Jung T, Sung H K, Wu M C, et al. Demonstration of monolithic optical injection locking using a two section DFB laser[C]//Conference on Lasers and Electro-Optics. Baltimore:IEEE, 2003:295-296.
[9] Lau E K, Zhao X, Sung H K, et al. Strong optical injection-locked semiconductor lasers demonstrating > 100 GHz resonance frequencies and 80 GHz intrinsic bandwidths[J]. Optics Express, 2008, 16(9):6609-18.
[10] Chow W W, Yang Z S, Vawter G A, et al. Modulation Response improvement with isolator-free injection-locking[J]. IEEE Photonics Technology Letters, 2009, 21(13):839-841.
[11] Tauke-Pedretti A, Vawter G A, Skogen E J, et al. Mutual injection locking of monolithically integrated coupled-cavity DBR lasers[J]. IEEE Photonics Technology Letters, 2011, 23(13):908-910.
[12] Browning C, Shi K, Latkowski S, et al. Performance improvement of 10 Gb/s direct modulation OFDM by optical injection using monolithically integrated discrete mode lasers[J]. Optics Express, 2011, 19(26):289-94.
[13] Xie L, Man J W, Wang B J, et al. 24 GHz directly modulated DFB laser modules for analog applications[J]. IEEE Photonics Technology Letters, 2012, 24(24):407-409.
[14] Tsuzuki K, Shibata Y, Kikuchi N, et al. Full C-Band tunable DFB laser array copackaged with InP mach-zehnder modulator for dwdm optical communication systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3):521-527.
[15] Welch D F, Dominic V G, Kish F A, et al. Photonic integrated circuit (PIC) chips:US 7519246 B2[P]. 2009-04-14.
[16] Wang L A, Lo Y H, Gozdz A S, et al. Integrated four-wavelength DFB laser array with 10 Gb/s speed and 5 nm continuous tuning range[J]. IEEE Photonics Technology Letters, 1992, 4(4):318-320.
[17] Hillmer H, Klepser B. Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and tilted waveguides[J]. IEEE Journal of Quantum Electronics, 2004, 40(10):1377-1383.
[18] Ryu S W, Kim J H. Multi-wavelength semiconductor laser array and method for fabricating the same:US 6594298 B2[P]. 2003-07-15.
[19] Mazed M A. Techniques for fabricating and packaging multi-wavelength semiconductor laser array devices (chips) and their applications in system architectures:US 6411642[P]. 2002-06-25.
[20] Li J, Wang H, Chen X, et al. Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology.[J]. Optics Express, 2009, 17(7):5240-5245.
[21] Zhao J, Chen X, Zhou N, et al. Experimental demonstration of a 16-channel DFB laser array based on nanoimprint technology[J]. Semiconductor Science & Technology, 2013, 28(5):50-51.
[22] Zhang C, Liang S, Zhu H, et al. A modified SAG technique for the fabrication of DWDM DFB laser arrays with highly uniform wavelength spacings[J]. Optics Express, 2012, 20(28):29620-29625.
[23] 陈向飞. 基于重构-等效啁啾技术制备半导体激光器的方法及装置:101034788 A[P]. 2007-09-12. Chen Xiangfei. The reconstruction method of equivalent chirp technology and its organs cup semiconductor device based on:101034788 A[P]. 2007-09-12.
[24] Chen X. Distributed feedback semiconductor laser based on reconstruction-equivalent-chirp technology and the manufacture method of the same:US 7873089 B2[P]. 2011-01-18
[25] Shi Y, Chen X, Zhou Y, et al. Experimental demonstration of eight-wavelength distributed feedback semiconductor laser array using equivalent phase shift.[J]. Optics Letters, 2012, 37(16):3315-3317.
[26] Shi Y, Chen X, Zhou Y, et al. Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique[J]. Optics Express, 2012, 20(16):17374-17379.
[27] Ito H, Kodama S, Muramoto Y, et al. High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(4):709-727.
[28] Williams K J, Tulchinsky D A, Campbell J C. High-power photodiodes[C]//IEEE International Topical Meeting on Microwave Photonics. Victoria, BC:IEEE, 2007:50-51.
[29] Tulchinsky D A, Li X, Li N, et al. High-saturation current wide-bandwidth photodetectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(4):702-708.
[30] Shi J W, Wu Y S, Hsieh S H, et al. High-power and high-responsivity photodiode for long-haul and short-reach fiber communication[C]//SPIE Proceedings Vol. 6013:Optoelectronic Devices:Physics, Fabrication, and Application Ⅱ. Boston, MA:SPIE, 2005. Doi:10.1117/12.632404.
[31] Li Z, Pan H P, Chen H, et al. High-saturation-current modified uni-traveling-carrier photodiode with cliff layer[J]. IEEE Journal of Quantum Electronics, 2010, 46(5):626-632.
[32] Shi J W, Kuo F M, Bowers J E. Design and analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50Ω load for highpower performance[J]. IEEE Photonics Technology Letters, 2012, 24(7):533-535.
[33] Chtioui M, Lelarge F, Enard A, et al. High responsivity and high power UTC and MUTC GaInAs-InP photodiodes[J]. IEEE Photonics Technology Letters, 2012, 24(4):318-320.
[34] Cole C, Huebner B, Johnson J. Photonic integration for high-volume, low-cost applications[J]. IEEE Communications Magazine, 2009, 47(3):S16-S22.
[35] Kanazawa S, Fujisawa T, Ohki A, et al. A compact EADFB laser array module for a future 100 Gb/s ethernet transceiver[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5):1191-1197.
[36] Man J W, Qi X Q, Xie L, et al. High bandwidth optical transceiver module for analog optical link in Ku band[J]. IEEE Photonics Technology Letters, 2012, 24(3):212-214.
[37] Xie L, Man J W, Wang B J, et al. 24 GHz directly modulated DFB laser modules for analog applications[J]. IEEE Photonics Technology Letters, 2012, 24(24):407-409.
[38] Medeiros M C R, Avó R, Laurêncio P, et al. RoFnet-reconfigurable radio over fiber network architecture overview[J]. Journal of Telecommunications & Information Technology, 2009.
[39] Parker M C, Walker S D, Llorente R, et al. Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project[J]. Optoelectronics Iet, 2010, 4(6):247-259.
[40] Wake D, Nkansah A, Gomes N J. Radio over fiber link design for next generation wireless systems[J]. Journal of Lightwave Technology, 2010, 28(16):2456-2464.
[41] Zou Q, Merghem K, Azouigui S, et al. Feedback-resistant p-type doped InAs/InP quantum-dash distributed feedback lasers for isolator-free 10 Gb/s transmission at 1.55μm[J]. Applied Physics Letters, 2010, 97(23):231115-231115-3.
[42] Gutierrez F Jr, Parrish K, Rappaport T S. On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems[C]//Proceedings of the 28th IEEE conference on Global telecommunications. Piscataway, NJ:IEEE, 2009:3285-3291.
[43] Ng'Oma A, Sauer M, Annunziata F, et al. Simple multi-Gbps 60 GHz radio-over-fiber links employing optical and electrical data up-conversion and feed-forward equalization[C]//Optical Fiber Communication-Incudes Post Deadline Papers, 2009. San Diego, CA:IEEE, 2009:1-3.
文章导航

/