专题论文

基于少模光纤的模分复用光传输技术

  • 付松年 ,
  • 于大伟
展开
  • 华中科技大学光学与电子信息学院, 下一代互联网接入系统国家工程实验室, 武汉 430074
付松年,教授,研究方向为光纤通信器件和系统,电子信箱:songnian@hust.edu.cn;于大伟(共同第一作者),博士研究生,研究方向为光纤通信器件和系统,电子信箱:yudawei2012@hust.edu.cn

收稿日期: 2016-06-30

  修回日期: 2016-08-03

  网络出版日期: 2016-09-21

基金资助

国家自然科学基金项目(61575071,61275069)

Mode division multiplexing transmission over few-mode fiber

  • FU Songnian ,
  • YU Dawei
Expand
  • National Engineering Laboratory for Next Generation InternetAccess System;School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2016-06-30

  Revised date: 2016-08-03

  Online published: 2016-09-21

摘要

基于少模光纤的模分复用技术可将现有单模光纤通信传输系统容量提高数倍乃至数十倍,被公认为能够突破传统单模光纤通信系统传输容量瓶颈的有效技术手段。本文综述了用于对光纤中模式进行复用和解复用的模分复用器、传输用少模光纤、长距离传输提供中继的少模光放大器等方面的研究进展,介绍了利用上述器件开展的模式复用光传输系统实验,展望了模分复用光传输的未来研究方向。

本文引用格式

付松年 , 于大伟 . 基于少模光纤的模分复用光传输技术[J]. 科技导报, 2016 , 34(16) : 62 -68 . DOI: 10.3981/j.issn.1000-7857.2016.16.006

Abstract

The growing Internet traffic has imposed strong demands on current fiber optical communications. Mode division multiplexing (MDM) transmission based on few mode fiber (FMF) has attracted worldwide research interests, due to the potential for overcoming the capacity crunch of standard single mode fiber (SSMF). It is expected that N spatial modes in the FMF can achieve a capacity N times higher than that of the SSMF. We review the recent progress of MDM techniques including mode division multiplexer/demultiplexer, FMF design and fabrication, few-mode fiber amplifiers for long-haul transmission, and the latest outstanding transmission demonstrations. Finally, we outline the prospects and future challenges in this research topic.

参考文献

[1] Weerdenburg J, Velazquez-Benitez A, Uden R, et al. 10 spatial mode transmission using low differential mode delay 6-LP fiber using all-fiber photonic lanterns[J]. Optics Express, 2015, 23(19):24759-24769.
[2] Ellis A D, Zhao J, Cotter D. Approaching the non-linear shannon limit[J]. Journal of Lightwave Technology, 2010, 28(4):423-433.
[3] Chen Y, Lobato A, Jung Y, et al. 41.6 Tbit/s C-band SDM OFDM transmission through 12 spatial and polarization modes over 74.17 km few mode fiber[J]. Journal of Lightwave Technology, 2015, 33(7):1440-1444.
[4] Sleiffer VAJM, Jung Y, Veljanovski V, et al. 73.7 Tb/s (96×3×256 Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA[J]. Optics Express, 2012, 20(26):B428-B438.
[5] Soma D, Igarashi K, Wakayama Y, et al. 2.05 peta-bit/s super-nyquist-WDM SDM transmission using 9.8 km 6 mode 19 core fiber in full C band[C]//Proceedings of European Conference on Optical Communication 2015. Valencia, Spain:IEEE, 2015:PDP5A.1-3.
[6] Berdagué S, Facq P. Mode division multiplexing in optical fibers[J]. Applied Optics, 1982, 21(11):1950-1955.
[7] Yu D, Fu S, Tang M, et al. A robust mode converter based on liquid crystal on silicon (LCOS) with off-focus operation[J]. Photonics Journal, 2015, 7(3):1-8.
[8] Wang Y, Liang L, Yu D, et al. Optoelectronic optimization of mode selective converter based on liquid crystal on silicon[J]. Optics & Laser Technology, 2016, 77:198-202.
[9] Birks T A, Gris-Sánchez I, Yerolatsitis S, et al. The photonic lantern[J]. Advances in Optics and Photonics, 2015, 7(2):107-167.
[10] Velázquez-Benítez A M, Antonio-López J E, Alvarado-Zacarías J C, et al. Scaling the Fabrication of higher order photonic lanterns using mocrostruc-tured preforms[C]//Proceedings of European Conference on Optical Communication 2015. Valencia, Spain:IEEE, 2015:Tu3.3.2.
[11] Chen H, Fontaine N K, Ryf R, et al. Design constraints of photonic-lantern spatial multiplexer based on laser-inscribed 3-D waveguide technology[J]. Journal of Lightwave Technology, 2015, 33(6):1147-1154.
[12] Ryf R, Randel S, Gnauck A H, et al. Space-division multiplexing over 10 km of three-mode fiber using coherent 6×6 MIMO processing[C]//Proceedings of Optical Fiber Communication Conference 2011. Los Angeles, USA:Optical Society of America,, 2011:PDPB10.
[13] Mori T, Sakamoto T, Wada M, et al. Low DMD four LP mode transmission fiber for wide-band WDM-MIMO system[C]//Proceedings of Optical Fiber Communication Conference 2013. Anaheim, USA:Optical Society of America, 2013:OTh3K.1.
[14] Sillard P, Molin D, Bigot-Astruc M, et al. Low-DMGD 6-LP-mode fiber[C]//Proceedings of Optical Fiber Communication Conference 2014. San Francis-co, USA:Optical Society of America, 2014:M3f.2.
[15] Jensen RV, Gruner-Nielsen L, Wong N H L, et al. Demonstration of a 9 LP-mode transmission fiber with low DMD and loss[C]//Proceedings of Optical Fiber Communication Conference 2015. Los Angeles, USA:Optical Society of America, 2015:W2A.34.
[16] Sillard P, Molin D, Bigot-Asturc M, et al. Low-differential-mode-group-delay 9-LP-mode fiber[C]//Proceedings of Optical Fiber Communication Confer-ence 2015. Los Angeles, USA:Optical Society of America, 2015:M2C.2.
[17] Yu D, Fu S, Tang M. et al. Mode dependent characteristics of Rayleigh backsdcattering in weakly-coupled few-mode fiber[J]. Optics Communications, 2015, 346:15-20.
[18] Peckham D W, Sun Y, Mc C A, et al. Few-mode fiber technology for spatial multiplexing[M]//Ivan Kaminow, Tingye Li, Alan E W. Optical Fiber Tele-communications VI A, Manhattan:Elsevier, 2013:283-319.
[19] Jung Y, Alam S, Li Z, et al. First demonstration and detailed characterization of a multimode amplifier for space division multiplexed transmission sys-tems[J]. Optics Express, 2011, 19(26):B952-B957.
[20] Salsi M, Ryf R, Cocq G L, et al. A six-mode erbium-doped fiber amplifier[C]//Proceedings of European Conference and Exhibition on Optical Communi-cation 2012. Amsterdam, Netherlands:Optical Society of America, 2012:Th.3.A.6.
[21] Lim E L, Jung Y, Kang Q, et al. First demonstration of cladding pumped few-moded EDFA for mode division multiplexed transmission[C]//Proceedings of Optical Fiber Communication Conference 2014, San Francisco, USA:Optical Society of America, 2014:M2J. 2.
[22] Jain S, Jung Y, May-Smith T C, et al. Few-mode multi-element fiber amplifier for mode division multiplexing[J]. Optics Express, 2014, 22(23):29031-29036.
[23] Ono H, Hosokawa T, Ichii K, et al. 2-LP mode few-mode fiber amplifier employing ring-core erbium-doped fiber[J]. Optics Express, 2015, 23(21):27405-27418.
[24] Ryf R, Fontaine N K, Chen H, et al. 72 Tb/s transmission over 179 km all-fiber 6-mode span with two cladding pumped in-line amplifiers[C]//Proceed-ings of European Conference and Exhibition on Optical Communication 2015. Valencia, Spain:IEEE, 2015:Tu.3.2.2.
[25] Ryf R, Sierra A, Essiambre R J, et al. Mode-equalized distributed Raman amplification in 137 km few-mode fiber[C]//Proceedings of European Confer-ence and Exposition on Optical Communications 2011. Geneva, Switzerland:Optical Society of America, 2011:Th.13.K.5.
[26] Ryf R, Randel S, Mestre M A, et al. 209 km single-span mode-and wavelength-multiplexed transmission over hybrid few-mode fiber[C]//Proceedings of European Conference and Exhibition on Optical Communication 2012. Amsterdam, Netherlands:Optical Society of America, 2012:Tu.1.C.1.
[27] Ryf R, Esmaeelpour M, Fontaine N K, et al. Distributed raman amplification based transmission over 1050 km few-mode fiber[C]//Proceedings of Euro-pean Conference and Exhibition on Optical Communication 2015. Valencia, Spain:IEEE, 2015:Tu.3.2.3.
[28] Zhao N, Huang B, Amezcua-Correa R, et al. Few-mode fiber optical parametric amplifier[C]//Proceedings of Optical Fiber Communication Conference 2013. Anaheim, USA:Optical Society of America, 2013:OTu2D.5.
[29] Ryf R, Fontaine N K, Mestre M A, et al. 12×12 MIMO transmission over 130 km few-mode fiber[C]//Proceedings of Frontiers in Optics 2012. Roches-ter, USA:Optical Society of America (OSA), 2012:FW6C.4.
[30] Fontaine N K, Ryf R, Chen H, et al. 30×30 MIMO transmission over 15 spatial modes[C]//Proceedings of Optical Fiber Communication Conference 2015. Los Angeles, USA:Optical Society of America, 2015:Th5C.1.
[31] Randel S, Ryf R, Gnauck A H, et al. Mode-Multiplexed 6×20 GBd QPSK transmission over 1200 km DGD-compensated few-mode fiber[C]//Proceed-ings of Optical Fiber Communication Conference 2012. Los Angeles, USA:Optical Society of America, 2012:PDP5C.5.
[32] Chen H, Sleiffer V, Uden R, et al. 3 MDM×8 WDM×320 Gb/s DP-32QAM transmission over a 120 km few-mode fiber span employing 3-spot mode couplers[C]//Proceedings of Opto Electronics and Communications Conference and Photonics in Switching 2013. Kyoto, Japan:Optical Society of Ameri-ca (OSA), 2013:PD3_6.
[33] Ryf R, Randel S, Fontaine N K, et al. 32 bit/s/Hz spectral efficiency WDM transmission over 177 km few-mode fiber[C]//Proceedings of National Fiber Optic Engineers Conference 2013. Anaheim, USA:Optical Society of America, 2013:PDP5A. 1.
[34] Uden R G H, Okonkwo C M, Sleiffer V A J M. et al. MIMO equalization with adaptive step size for few-mode fiber transmission systems[J]. Optics Ex-press, 2014, 22(1):119-126.
文章导航

/