Space information network (SIN) is a heterogeneous network that has multiple platforms including GEO/MEO/LEO satellites, stratosphere balloons, unmanned aerial vehicles in the backbone, and terrestrial terminals (e.g., ground stations) functioning as access nodes. The appearance of SIN realizes efficient resource sharing and utilization of distributed information within a large-scale space. Due to the diversity of network nodes, the condition of communication links in SINs is very complicated. Specifically, there are six types of SIN links:inter-satellite link, inter-aircraft link, terrestrial link, satellite-aircraft link, satellite-ground link, and aircraft-ground link. In this paper, we extensively investigate the recent advances in the field of communication links in the SIN, and analyze the research findings, especially the studies on radio frequency (RF), free space optics (FSO) and FSO/RF hybrid communication in the SIN. The analysis demonstrates that, compared with the traditional RF communication, FSO technology has high bandwidth, large capacity, and negligibly small requirement of spectral examination, at the additional cost of narrow spread, slow motion tracking, and vulnerability to bad weather. We further show that FSO is most suitable for inter-satellite links, while for the other links over atmosphere influence or rapid positioning, the FSO/RF hybrid communication has more obvious advantages. Since there have been minor efforts on the FSO/RF hybrid communication, we propose an adaptive switching mechanism for FSO/RF hybrid communication based on big data prediction.
[1] Spangelo S, Cutler J, Klesh A, et al. Models and tools to evaluate space communication network capacity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3):2387-2404.
[2] Reinhart R, Kacpura T, Johnson S, et al. NASA's space communications and navigation test bed aboard the international space station[J]. IEEE Aerospace and Electronic Systems Magazine, 2013, 28(4):4-15.
[3] Li H, Luo H, Yu F, et al. Reliable transmission of consultative committee for space data systems file delivery protocol in deep space communication[J]. IEEE Journal of Systems Engineering and Electronics, 2010, 21(3):349-354.
[4] The Space Communications Architecture Working Group (SCAWG). NASA space communications and navigation architecture recommendations for 2005-2030[R]. SCAWG, 2006.
[5] 周建国. 基于DTN的空间综合信息网络关键技术研究[D]. 武汉:武汉大学电子信息学院, 2013. Zhou Jianguo. Research on key technologies of spatial information network based on DTN[D]. Wuhan:School of Electronic Information, Wuhan University, 2013
[6] Ghazisaidi N, Maier M, Assi C M. Fiber-wireless (FiWi) access networks:A survey[J]. IEEE Communications Magazine, 2009, 47(2):160-167.
[7] Willebrand H, Ghuman B S. Fiber optics without fiber[J]. IEEE Spectrum, 2001, 38(8):40-45.
[8] 吴佑寿. 高空平台信息系统——新一代无线通信体系(上)[J]. 中国无线电管理, 2003(6):3-8. Wu Youshou. High altitude platform stations information system:New generation-wireless communications system (part 1)[J]. China Radio Management, 2003(6):3-8.
[9] Mukherjee J, Ramamurthy B. Communication technologies and architectures for space network and interplanetary internet[J]. IEEE Communications Surveys & Tutorials, 2013, 15(2):881-897.
[10] Akyildiz I F, Akan Ö B, Chen C, et al. InterPlaNetary Internet:State-of-the-art and research challenges[J]. Computer Networks, 2003, 43(2):75-112.
[11] Burleigh S, Hooke A, Torgerson L, et al. Delay-Tolerant networking:An approach to interplanetary Internet[J]. IEEE Communications Magazine, 2003, 41(6):128-136.
[12] Rash J, Hogie K, Casasanta R. Internet technology for future space missions[J]. Computer Networks, 2005, 47(5):651-659.
[13] Noles J, Scott K, Weiss H, et al. Next generation space internet[C]//Proceedings of Electronic System-Integration Technology Conference (ESTC) 2001. Helsinki:ESTC, 2001.
[14] Tahboub O Y, Khan J I. A critical design evaluation of the next generation space network architectures[R]. Technical Report TR-2007-09-01, Medianet Lab, 2007.
[15] Younes B A, Schier J S. Space communications and navigation (SCaN) integrated network architecture definition document (ADD). Volume 1; Executive Summary; Revision 1[R]. NASA Technical Reports Server, 2010.
[16] 诵芬, 超礼. 世界航天发展史[M]. 郑州:河南科学技术出版社, 2000. Song Fen, Chao Li. The aerospace development history of the word[M]. Zhengzhou:Henan Science and Technology Press, 2000.
[17] Park J M, Ku B J, Oh D S. Technical and regulatory studies on HAPS[C]//Proceedings of 2008 IEEE Global Telecommunications Conference (GLOBECOM'08). New Orleans, USA:IEEE, 2008:1-5.
[18] 王远亮. 自由空间光通信系统的关键技术研究[D]. 西安:西安电子科技大学电子工程学院, 2007. Wang Yuanliang. Research on the key technology of free space optical communication system[D]. Xi'an:School of Electronic Engineering, Xidian University.
[19] ElBatt T, Izadpanah H. Design aspects of hybrid RF/free space optical wireless networks[C]//Broadband Communications for the Internet Era Symposium digest, 2001 IEEE Emerging Technologies Symposium. Richardson, TX, USA:IEEE, 2001:157-161.
[20] Bloom S, Hartley W S. The last-mile solution:hybrid FSO radio[EB/OL].[2016-04-28]. http://morse.uml.edu/Activities.d/Summer-05/PAPERS/KC/AirFiber-HFR.pdf.
[21] Dissanayake A, Allnutt J, Haidara F. A prediction model that combines rain attenuation and other propagation impairments along earth-satellite paths[J]. Antennas and Propagation, IEEE Transactions on, 1997, 45(10):1546-1558.
[22] Leitgeb E, Gebhart M, Truppe A, et al. Hybrid wireless networks for civil-military-cooperation (CIMIC) and disaster management[C]//Proceedings of European Symposium on Optics and Photonics for Defence and Security. London, UK:International Society for Optics and Photonics, 2004:139-150.
[23] Wu H, Kavehrad M. Availability evaluation of ground-to-air hybrid FSO/RF links[J]. International Journal of Wireless Information Networks, 2007, 14(1):33-45.
[24] Leitgeb E, Zettl K, Muhammad S S, et al. Investigation in free space optical communication links between unmanned aerial vehicles (UAVs)[C]//Proceedings of Transparent Optical Networks 2007(ICTON'07). Rome:IEEE, 2007, 3:152-155.
[25] Muhammad S S, Plank T, Leitgeb E, et al. Challenges in establishing free space optical communications between flying vehicles[C]//Proceedings of Communication Systems, Networks and Digital Signal Processing 2008(CSNDSP'08). Craz:IEEE, 2008:82-86.
[26] Tsiftsis T, Sandalidis H G, Karagiannidis G K, et al. FSO links with spatial diversity over strong atmospheric turbulence channels[C]//Proceedings of 2008 IEEE International Conference on Communications (ICC'08). Beijing, China:IEEE, 2008:5379-5384.
[27] Nadeem F, Kvicera V, Awan M S, et al. Weather effects on hybrid FSO/RF communication link[J]. Selected Areas in Communications, IEEE Journal on, 2009, 27(9):1687-1697.
[28] Chujo W, Manabe T, Yamamoto S. 60 GHz short-range terrestrial rainfall attenuation compared with K-band long-distance satellite link[C]//Proceedings of 2014Antennas and Propagation (ISAP). Kaohsiung:IEEE, 2014:559-560.
[29] Kashyap A, Rawat A, Shayman M. WSN18-4:Integrated backup topology control and routing of obscured traffic in hybrid RF/FSO networks[C]//Proceedings of 2006 Global Telecommunications Conference (GLOBECOM'06). San Francisco, USA:IEEE, 2006:1-6.
[30] Sivathasan S, Brien D C O. RF/FSO wireless sensor networks:A performance study[C]//Proceedings of 2008 Global Telecommunications Conference (GLOBECOM'08). New Orleans, USA:IEEE, 2008:1-5.
[31] Nadeem F, Leitgeb E, Awan M S, et al. Comparing the life time of terrestrial wireless sensor networks by employing hybrid FSO/RF and only RF access networks[C]//Proceedings of 2009 Wireless and Mobile Communications (ICWMC'09). Cannes/La Bocca, French Riviera, France:IEEE, 2009:134-139.
[32] Engelmann A, Jukan A. Serial, parallel or hybrid:Towards a highly reliable transmission in RF/FSO network systems[C]//Proceedings of 2015 IEEE International Conference (ICC'15). London, UK:IEEE, 2015:6181-6186.
[33] Lee E, Park J, Han D, et al. Performance analysis of the asymmetric dual-hop relay transmission with mixed RF/FSO links[J]. Photonics Technology Letters, IEEE, 2011, 23(21):1642-1644.
[34] Tapse H, Borah D K. Hybrid optical/RF Channels:Characterization and performance study using low density parity check codes[J]. Communications, IEEE Transactions, 2009, 57(11):3288-3297.
[35] Zhang W, Hranilovic S, Shi C. Soft-switching hybrid FSO/RF links using short-length raptor codes:design and implementation[J]. Selected Areas in Communications, IEEE Journal, 2009, 27(9):1698-1708.
[36] White G. Method and apparatus for providing configuration information in a network:US6233687[P]. 2001-05-15.
[37] Ott L, Longnecker M, Ott R L. An introduction to statistical methods and data analysis[M]. Pacific Grove, CA:Duxbury, 2001.
[38] Bernier S, Barbeau M. A virtual ground station based on distributed components for satellite communication[C]//Proceedings of 15th Annual Small Satellite Confercnce. Logan, Utah:AZAA, 2001:SSC01-VⅢA-4.
[39] Wickert J, Galas R, Beyerle G, et al. GPS ground station data for CHAMP radio occultation measurements[J]. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 2001, 26(6):503-511.
[40] Martini R, Gmachl C, Falciglia J, et al. High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers[J]. Electronics Letters, 2001, 37(3):191-193.