专题论文

光背板互连技术研究进展

  • 邓传鲁 ,
  • 王廷云 ,
  • 庞拂飞 ,
  • 宋志强 ,
  • 王建辉 ,
  • 陈佳敏 ,
  • 严新捷
展开
  • 上海大学特种光纤与光接入网重点实验室, 上海 200093
邓传鲁,博士研究生,研究方向为互连光波导的制备技术,电子信箱:chuanludeng@163.com

收稿日期: 2016-06-30

  修回日期: 2016-07-18

  网络出版日期: 2016-09-21

基金资助

上海市科技成果转化与产业化项目(16511104300)

Research progress of optical interconnection technology on optical printed circuit boards

  • DENG Chuanlu ,
  • WANG Tingyun ,
  • PANG Fufei ,
  • SONG Zhiqiang ,
  • WANG Jianhui ,
  • CHEN Jiamin ,
  • YAN Xinjie
Expand
  • Key Laboratory of Specialty Fiber Optics and Optical Access Networks of Shanghai University, Shanghai 200093, China

Received date: 2016-06-30

  Revised date: 2016-07-18

  Online published: 2016-09-21

摘要

光背板互连技术是近年来通信领域的研究热点,以高传输带宽、低损耗、低成本、无电磁干扰等优势具有广阔的应用前景。本文介绍互连光波导的结构模型及光背板的制备方法,综述近年来光背板相关的传输特性、耦合方式、应用系统研究等关键技术的重要进展,展望了对光背板互连技术的发展方向。

本文引用格式

邓传鲁 , 王廷云 , 庞拂飞 , 宋志强 , 王建辉 , 陈佳敏 , 严新捷 . 光背板互连技术研究进展[J]. 科技导报, 2016 , 34(16) : 90 -98 . DOI: 10.3981/j.issn.1000-7857.2016.16.010

Abstract

Optical interconnect on printed circuit boards (OPCBs) is a research focus in the field of communication due to its unique advantages of high transmission rate, low power consumption, low cost, no electromagnetic interference, etc. In this article, firstly the schematic diagrams of optical waveguide and the preparation process of OPCBs are introduced in brief. Then, the progresses of the transmission characteristics, coupling method, environmental reliability, system application, etc. about OPCBs are discussed in detail. Finally, the outlook of its development direction is prospected.

参考文献

[1] Ghiasi A. Large data centers interconnect bottlenecks[J]. Optics Ex-press, 2015, 23(3):2085-2090.
[2] Dangel R, Horst F, Jubin D, et al. Development of versatile polymer waveguide flex technology for use in optical interconnects[J]. Journal of Lightwave Technology, 2013, 31(24):3915-3926.
[3] Matsui J, Yamamoto T, Tanaka K, et al. Optical interconnect architec-ture for servers using high bandwidth optical mid-plane[C]. Optical Fi-ber Communication Conference & Exposition, Los Angeles, United States, March 1-3, 2012.
[4] Taubenblatt M A. Optical interconnects for high performance computing[J]. Journal of Lightwave Technology, 2012, 30(4):448-458.
[5] Kachris C, Tomkos I. A survey on optical interconnects for data centers[J]. IEEE Communications Surveys & Tutorials, 2012, 14(4):1021-1036.
[6] Kingford PCB Electronics Co., Ltd. Happy holden:HDI use in optical waveguides[EB/OL]. 2014-07-12[2016-04-18]. http://www.chinapcb-manufacturing.com/happy-holden-hdi-use-optical-waveguides/.
[7] 李杰. 用于光互连的聚合物波导研究[D]. 长沙:国防科技大学工学院, 2009. Li Jie. The study of polymer waveguide based on optical interconnection[D]. Changsha:Department of Engieering, National University of De-fense Technology, 2009.
[8] 凌云. 有机聚合物光波导的研制[D]. 南京:东南大学物理系, 2005. Ling Yun. Study on polymer optical waveguide[D]. Nanjing:Department of Physics, Dongnan University, 2005.
[9] 张金星. 基于光波导互连的EOPCB的研究[D]. 武汉:华中科技大学光电子科学与工程学院, 2011. Zhang Jinxing. A thesis submitted in partial fulfillment of the require-ments for the degree of master of engineering[D]. Wuhan:School of Op-toelectronic Science and Engineering, Huazhong University of Science and Technology, 2011.
[10] Neyer A, Kopetz S, Rabe E, et al. Electrical-optical circuit board us-ing polysiloxane optical waveguide layer[C]. Proceeding of 55th Elec-tronic Components & Technology Conference, Florida, USA, May 31-June 3, 2005.
[11] Schmidtke K, Flens F, Worrall A, et al. 960 Gb/s optical backplane ecosystem using embedded polymer waveguides and demonstration in a 12G SAS storage array[J]. Journal of Lightwave Technology, 2013, 31(24):3970-3975.
[12] Dangel R, Hofrichter J, Horst F, et al. Polymer waveguides for electrooptical integration in data centers and high-performance computers[J]. Optics Express, 2015, 23(4):4736-4750.
[13] Jose G, Sorbello G, Taccheo S, et al. Ag+-Na+ ion exchange from di-lute melt:Guidelines for planar waveguide fabrication on a commer-cial phosphate glass[J]. Optical Materials, 2003, 23(3-4):559-567.
[14] Pitwon R C A, Brusberg L, Schroder H, et al. Pluggable electro-opti-cal circuit board interconnect based on embedded graded-index pla-nar glass waveguides[J]. Journal of Lightwave Technology, 2015, 33(4):741-754.
[15] Lee E H, Lee S G, O B H, et al. Fabrication of a hybrid electrical-op-tical printed circuit board (EO-PCB) by lamination of an optical print-ed circuit board (O-PCB) and an electrical printed circuit board (EPCB)[C]. The International Society for Optical Engineering of SPIE 6126, San Jose, USA, January 21, 2006.
[16] Mischke H, Gruetzner G, Shaw M. Plasma etching of polymers like SU-8 and PCB[C]. The International Society for Optical Engineering of SPIE 4979, San Jose, USA, January 25, 2003.
[17] Krabe D, Scheel W. Optical interconnects by hot embossing for mod-ule and PCB technology[C]. Proceedings 49th Electronic Components and Technology Conference, San Diego, USA, June 1-4, 1999.
[18] Iliescu C I, Tay F E H, Miao J M, et al. Wafer level packaging of pres-sure senor using SU8 photoresist[C]. The International Society for Opti-cal Engineering of SPIE 5649. Sydney, Australia, March 9, 2005.
[19] 朱军, 赵小林, 倪智萍. SU-85光刻胶的应用工艺研究[J]. 微细加工技术, 2001(2):57-60. Zhu Jun, Zhao Xiaolin, Ni Zhiping. Study on application technology of SU8-5 Photo Resist[J]. Micro machining technology, 2001(2):57-60.
[20] Neyer A, Kopetz S, Rable E. Electrical-optical circuit board using polysiloxane optical waveguide layer[C]. Proceedings 55th Electronic Components and Technology Conference, Orlando USA, May 31-June 3, 2005.
[21] Wittmann B, Lehmacher S, Kopecz S, et al. Optical interconnects on and in printed circuit boards[J]. International Journal of Electronics and Communications, 2001, 55(5):319-322.
[22] Takenobu S, Okazoe T. Heat resistant and low-loss fluorinated poly-mer optical waveguides at 1310/1550 nm for optical interconnects[C]. European Conference & Exhibition on Optical Communication, Gene-va, Switzerland, September 18-22, 2011.
[23] 张家亮. 光电印制电路板的发展评述(3)——聚合物波导的成型工艺(1)[J]. 印制电路信息, 2007(2):17-20. Zhang Jialiang. Review of progress in optical-electronic circuit boards (3):Patterning techniques of polymer optical waveguide layers (part 1)[J]. Printed Circuit Information, 2007(2):17-20.
[24] Yoon K B, Cho I K, Ahn S H, et al. Optical PCB using waveguide-em-bedded backplane[C]. The International Society for Optical Engineer-ing of SPIE 5523, Denver, USA, October 14, 2004.
[25] Holland A S, Mitchell A, Balkunje V S, et al. Fabrication of rasised and incerted SU8 ploymer waveguides[C]. The International Society for Optical Engineering of SPIE 5644, Beijing, China, November 08, 2005.
[26] Thadesar P A, Bakir M S. Novel photo-defined polymer-enhanced through-silicon vias for silicon interposers[J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2013, 3(7):1130-1137.
[27] Choi C, Lin L, Liu Y J, et al. Flexible optical waveguide film fabrica-tions and optoelectronic devices integration for fully embedded boardlevel optical interconnects[J]. Journal of Lightwave Technology, 2004, 22(9):2168-2176.
[28] Balakrishnan M, Diemeer M B J, Driessen A, et al. Highly stable and low loss electro-optic polymer waveguides for high speed microring modulators using photodefinition[C]. The International Society for Opti-cal Engineering of SPIE 6123. San Jose, USA, January 21, 2006.
[29] Yu Z H, Luo F G, Di X, et al. Highly reliable optical interconnection network on printed circuit board for distributed computer systems[J]. Optics & Laser Technology, 2010, 42(8):1332-1336.
[30] Zakariyaha S S, Conway P P, Hutt D A, et al. CO2 laser micromachin-ing of optical waveguides for interconnection on circuit boards[J]. Op-tics and Lasers in Engineering, 2012, 50(12):1752-1756.
[31] Selviah D R, Walker A C, Hutt D A, et al. Integrated optical and elec-tronic interconnect PCB manufacturing research[J]. Circuit World, 2010, 36(2):5-19.
[32] Su R Z, Tang D H, Ding,W Q, et al. Efficient transmission of crossing dielectric slot waveguides[J]. Optics Express, 2011, 19(5):4756-4761.
[33] Ni W, Wu J, Wu X. Crossing and branching nodes in soft lithographybased optical interconnects[J]. Optics Express, 2007, 15(20):12872-12881.
[34] Tsarev A V. Efficient silicon wire waveguide crossing with negligible loss and crosstalk[J]. Optics Express, 2011, 19(15):13732-13737.
[35] 夏倩, 李康, 庞拂飞, 等. 光印刷电路板互连交叉光波导传输特性分析[J]. 半导体光电, 2013, 34(6):966-970. Xia Qian, Li Kang, Pang Fufei, et al. Transmission characteristics of multimode crossing optical waveguide[J]. Semiconductor Optoelectron-ics, 2013, 34(6):966-970.
[36] Israel D, Baets R, Shaw N, et al. Comparison of different polymeric multimode star couplers for backplane optical interconnect[J]. Journal of Lightwave Technology, 1995, 13(6):1057-1064.
[37] Bamiedakis N, Hashim A, Penty R V. et al. A 40 Gb/s optical bus for optical backplane Interconnections[J]. Journal of Lightwave Technolo-gy, 2014, 32(8):1526-1537.
[38] Schares L, Kash J A, Doany F E, et al. Terabus:Terabit/second-class card-level optical interconnect technologies[J]. IEEE Journal of Select-ed Topics in Quantum Electronics, 2006, 12(5):1032-1044.
[39] Dangel R, Berger C, Beyeler R, et al. Polymer-waveguide-based board-level optical interconnect technology for datacom applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 31(4):759-767
[40] Pepeljugoski P, Kash J, Doany F, et al. Low power and high density optical interconnects for future supercomputers[J]. Optical Fiber Com-munication, 2010, 45(2):1-3.
[41] Chao C Y, Fung W, Guo L J. Polymer microring resonators for bio-chemical sensing applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1):134-142.
[42] Hu J J, Feng N N, Carlie N, et al. Optical loss reduction in high-in-dex-contrast chalcogenide glass waveguides via thermal reflow[J]. Op-tics Express, 2010, 18(2):1469-1478.
[43] Pitwon R C A, Hopkins K, Milward D, et al. Passive assembly of par-allel optical devices onto polymer-based optical printed circuit boards[J]. Circuit World, 2010, 36(4):3-11.
[44] Dellmann L, Berger C, Beyeler1 R, et al. 120 Gb/s optical card-tocard interconnect link demonstrator with embedded waveguides[C]. Electronic Components and Technology Conference, San Diego, USA, May 30-June 2, 2007.
[45] Rosenberg P, Mathai S, Sorin W V, et al. Low cost, injection molded 120 Gbps optical backplane[J]. Journal of Lightwave Technology, 2012, 30(4):590-596.
[46] 贾娜娜, 邓传鲁, 庞拂飞, 等. 光波导端面的准分子激光刻蚀技术研究[J]. 中国激光, 2015, 42(3):120-125. Jia Nana, Deng Chuanlu, Pang Fufei, et al. Research on excimer laser etching technology for achieving optical waveguide end face[J]. Chi-nese Journal of Lasers, 2015, 42(3):120-125.
[47] 马慧莲, 杨建义, 李瑾, 等. 光波导-单模光纤的直接耦合[J]. 光通信研究, 2000, (3):43-46. Ma Huilian, Yang Jianyi, Li Jin, et al. Optical waveguide-fiber direct coupling[J]. Study on optical communications, 2000(3):43-46.
[48] Rho B S, Kang S, Cho H S, et al. PCB-compatible optical interconnec-tion using 45°-ended connection rods and via-holed waveguides[J]. Journal of Lightwave Technology, 2004, 22(9):2128-2134.
[49] Steenberge V G, Geerinck P, Van Put S V, et al. MT-compatible la-ser-ablated interconnections for optical printed circuit boards[J]. Jour-nal of Lightwave Technology, 2004, 22(9):2083-2090.
[50] Yoshimura R, Hikita M, Usui M, et al. Polymeric optical waveguide films with 45 mirrors formed with a 90 V-shaped diamond blade[J]. Electronics Letters, 1997, 33(15):1311-1312.
[51] Kim J S, Kim J J. Fabrication of multimode polymeric waveguides and micromirrors using deep X-ray lithography[J]. IEEE Photonics Tech-nology Letters, 2004, 16(3):798-800.
[52] Wang F T, Liu F H, Adibi A. 45 degree polymer micromirror integra-tion for board-level three-dimensional optical interconnects[J]. Optics Express, 2009, 17(13):10514-10521.
[53] Lee W J, Hwang S H, Lim J W, et al. Polymeric waveguide film with embedded mirror for multilayer optical circuits[J]. IEEE Photonics Technology Letters, 2009, 21(1):12-14.
[54] Erps V J, Hendrickx N, Debaes C, et al. Discrete out-of-plane cou-pling components for printed circuit board-level optical interconnec-tions[J]. IEEE Photonics Technology Letters, 2007, 19(21):1753-1755.
[55] Hendrickx N, Erps J V, Bosman E, et al. Embedded micromirror in-serts for optical printed circuit boards[J]. IEEE Photonics Technology Letters, 2008, 20(20):1727-1729.
[56] Erps J V, Hendrickx N, Erwin Bosman, et al. Design and fabrication of embedded micro-mirror inserts for out-of-plane couplingin PCBlevel optical interconnections[C]. The International Society for Optical Engineering of SPIE 7716, Brussels, Belgium, April 12, 2010.
[57] Bierhoff T, Schrage J, Halter M, et al. All optical pluggable boardbackplane interconnection system based on an MPX TM-FlexTail con-nector solution[C]. 2010 IEEE Photonics Society Winter Topicals Meet-ing Series (WTM), Palma, Spain, January 11, 2010.
[58] Cho M H, Hwang S H, Cho H S, et al. High-coupling-efficiency opti-cal interconnection using a 90-bent fiber array connector in optical printed circuit boards[J]. IEEE Photonics Technology Letters, 2005, 17(3):690-692.
[59] Taillaert D, Laere F V, Ayre M, et al. Grating couplers for coupling between optical fibers and nanophotonic waveguides[J]. Japanese Jour-nal of Applied Physics, 2006, 45(8A):6071-6077.
[60] Ju J J, Park S, Kim M S, et al. Data transfer for optical interconnec-tors using long range-SPP transmission lines[C]. Optical Fiber Commu-nication Conference and exhibition, Los Angeles, USA, March 4-8, 2012.
[61] Xia Q, Immonen M, J. Wu J H, et al. Optical backplane demonstrator with 10Gbps video transmission link on printed circuit board using op-tical waveguides[C]. International microsystems, packaging, assembly and circuits technology conference, Taipei, China, October 22-25, 2013.
[62] Håkansson A, Tekin T, Brusberg L, et al. PhoxTroT-a european ini-tiative toward low cost and low power photonic interconnects for data centres[C]. International Conference on Transparent Optical Networks, Budapest, Hungary, July 5-9, 2015.
文章导航

/