专题论文

光纤通信中非线性香农极限的突破——光频梳应用及发展趋势

  • 李建平 ,
  • 李朝晖
展开
  • 暨南大学光子技术研究院, 广州 510632
李建平,副研究员,研究方向为光通信及光频梳技术,电子信箱:tjpli421@jnu.edu.cn

收稿日期: 2016-04-26

  修回日期: 2016-07-18

  网络出版日期: 2016-09-21

基金资助

国家自然科学基金面上项目(61575082)

Breakthrough of nonlinear Shannon limit in optical fiber communication systems: Applications and trends of optical frequency comb

  • LI Jianping ,
  • LI Zhaohui
Expand
  • Institute of Photonics Technology, Jinan University, Guangzhou 510632, China

Received date: 2016-04-26

  Revised date: 2016-07-18

  Online published: 2016-09-21

摘要

受限于光纤克尔非线性效应对传输信号质量的影响,光纤通信系统的传输速率和容量难以突破非线性香农极限的限制。利用光频梳的相干特性结合数字信号处理技术突破了早期非线性香农极限的传输性能,有望开启光频梳在下一代光纤通信领域研究的新时代。本文介绍光频梳的定义及产生机制、光频梳在信息通信系统中的最新典型应用、基于光频梳和通信信号处理技术在其他物理科学领域中的交叉应用,探讨了光频梳技术的未来发展方向。

本文引用格式

李建平 , 李朝晖 . 光纤通信中非线性香农极限的突破——光频梳应用及发展趋势[J]. 科技导报, 2016 , 34(16) : 108 -111 . DOI: 10.3981/j.issn.1000-7857.2016.16.013

Abstract

The quality of transmitted signal is easy to be impacted due to the fiber Kerr nonlinearity, which results in the difficulty in increasing transmission capacity and speed of single mode fiber (SMF) based optical fiber communication systems. However, a new research by University of California at San Diego (UCSD) has shown that the technology based on optical frequency comb (OFC) combined with digital signal processing can improve the transmission performance significantly. This manifests that this OFC-based technology can be treated as a breakthrough of the nonlinear Shannon limit. This paper mainly relates to the topic of OFC, including the definition, generation methods, typical applications in information and communication systems, and the OFC-based crossed applications in other related physical scientific fields. Meanwhile, the trends of OFC technology have also been discussed.

参考文献

[1] Randel S, Corteselli S, Badini D, et al. First real-time coherent MIMO-DSP for six coupled mode transmission[C]//Proceedings of IEEE Photonics Conference (IPC). Virginia, USA:IEEE, 2015:1-2.
[2] Temprana E, Myslivets E, Kuo B, et al. Overcoming Kerr-induced capacitylimit in optical fiber transmission[J]. Science, 2015, 348(6242):1445-1448.
[3] Temprana E, Alic N, Kuo B, et al. Beating the nonlinear capacity limit[J]. Optics & Photonics News, 2016, 27(3):30-37.
[4] Pfeifle J, Brasch V, Lauermann M, et al. Coherent terabit communications withmicroresonator Kerr frequency combs[J]. Nature Photonics, 2014, 8:375-380.
[5] Ataie V, Esman D, Kuo B, et al.,Subnoise detection of a fast random event[J]. Science, 2015, 350(6266):1343-1346.
[6] Newbury N. Searching for applications witha fine-tooth comb[J]. Nature Photonics, 2011, 5(4):186-188.
[7] Liang W, Eliyahu D, Ilchenko V, et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator[J]. Nature Communications, 2015, 6(7957):1-8.
[8] Yi X, VahalaK, Li J, et al. Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy[J]. Nature Communications, 2015, 7(10436):1-9.
[9] BaoY, Yi X, Li Z, et al. A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01 pm resolution and 0.7[micro]s re-sponse time[J]. Light:Science & Applications, 2015, 4(e300):1-7.
文章导航

/