专题论文

近红外波段硅基石墨烯电光调制器研究进展

  • 潘听 ,
  • 吴佳旸 ,
  • 徐真真 ,
  • 邱辞源 ,
  • 苏翼凯
展开
  • 1. 上海交通大学电子信息与电气工程学院;区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240;
    2. 中兴通讯股份有限公司, 深圳 518057
潘听,硕士研究生,研究方向为硅基石墨烯光电特性,电子信箱:ptangela2013@sjtu.edu.cn

收稿日期: 2016-03-20

  修回日期: 2016-06-30

  网络出版日期: 2016-09-21

基金资助

国家自然科学基金项目(61235007,61505104)

Recent development in silicon-graphene integrated electro-optic modulators

  • PAN Ting ,
  • WU Jiayang ,
  • XU Zhenzhen ,
  • QIU Ciyuan ,
  • SU Yikai
Expand
  • 1. State Key Lab of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. Zhongxing Telecommunication Equipment Corporation, Shenzhen 518057, China

Received date: 2016-03-20

  Revised date: 2016-06-30

  Online published: 2016-09-21

摘要

近红外波段的电光调制器是未来光信号处理和计算系统中的关键功能元器件,硅基石墨烯电光调制器在结构尺寸、调制速率、调制带宽及大规模片上集成等方面具有诸多潜在优点而引起人们的广泛关注和重视。本文介绍了石墨烯的光电特性及光调制机理,结合石墨烯在近红外波段电光调制器中的研究及应用,综述了国内外近红外波段硅基石墨烯电光调制器的研究进展,重点叙述了条形波导结构、谐振结构、纳米梁结构的电光调制器的工作原理及各器件的特性,展望了硅基石墨烯电光调制器的研究方向。

本文引用格式

潘听 , 吴佳旸 , 徐真真 , 邱辞源 , 苏翼凯 . 近红外波段硅基石墨烯电光调制器研究进展[J]. 科技导报, 2016 , 34(16) : 116 -120 . DOI: 10.3981/j.issn.1000-7857.2016.16.015

Abstract

Near-infrared (NIR) electro-optic (EO) modulator will play a key role in future optical signal processing and communication systems. Graphene-silicon hybrid EO modulators have attracted much attention due to the merits regarding device footprints, modulation speeds, modulation bandwidth, and mass-productivity. In this paper, we firstly introduce the electro-optical properties of graphene and light modulation mechanism in EO modulators. Then based on the application of the graphene in EO modulators, this paper reviews current research progress of various types of NIR EO modulators based on graphene-silicon hybrid structure, and describes their operation principles and performances, including silicon waveguide graphene-based modulator, silicon micro-ring modulator based on graphene, and EO modulator based on graphene-silicon hybrid 1D photonic crystal nanobeam cavity. Finally, some future research directions are predicted.

参考文献

[1] Krishnamoorthy A V, Ho R, Zheng X Z, et al. Computer systems based on silicon photonic interconnects[J]. Proceedings of the IEEE, 2009, 97(7):1337-1361.
[2] McClure J W. Energy band structure of graphite[J]. IBM Journal of Re-search and Development, 1964, 8(3):255-261.
[3] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in sus-pended graphene[J]. Solid State Communications, 2008, 146(9-10):351-355.
[4] Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband op-tical modulator[J]. Nature, 2011, 474(7349):64-67.
[5] Liu M, Yin X B, Zhang X. Double-layer graphene optical modulator[J]. Nano Letters, 2012, 12(3):1482-1485.
[6] Kim K, Choi J Y, Kim T, et al. A role for graphene in silicon-based semiconductor devices[J]. Nature, 2011, 479(7373):338-344.
[7] Qiu C Y, Gao W L, Vajtai R, et al. Efficient modulation of 1.55μm ra-diation with gated graphene on a silicon microring resonator[J]. Nano Letters, 2014, 14(12):6811-6815.
[8] Du W, Li E P, Hao R. Tunability analysis of a graphene-embedded ring modulator[J]. IEEE Photonics Technology Letters, 2014, 26(20):2008-2011.
[9] Pan T, Qiu C Y, Wu J Y, et al. Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavi-ty[J]. Optics Express, 2015, 23(18):23357-23364.
文章导航

/